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THE IMPACT OF ENERGY DERIVATIVES ON THE CRUDE OIL MARKET 
 

Introduction 

Beginning in the 1970s, deregulation dramatically increased the degree of price 

uncertainty in the energy markets, prompting the development of the first exchange-

traded energy derivative securities. The success and growth of these contracts attracted a 

broader range of participants to the energy markets and stimulated trading in an even 

wider variety of energy derivatives. Today, many exchanges and over-the-counter 

markets worldwide offer futures, futures options, swap contracts, and exotic options on a 

broad range of energy products, including crude oil, fuel oil, gasoil, heating oil, unleaded 

gasoline, and natural gas. 

It is well known that derivative securities provide economic benefits. The key attribute of 

these securities is their leverage (i.e., for a fraction of the cost of buying the underlying 

asset, they create a price exposure similar to that of physical ownership). As a result, they 

provide an efficient means of offsetting exposures among hedgers or transferring risk 

from hedgers to speculators. In addition, derivatives promote information dissemination 

and price discovery. The leverage and low trading costs in these markets attract 

speculators, and as their presence increases, so does the amount of information 

impounded into the market price. These effects ultimately influence the underlying 

commodity price through arbitrage activity, leading to a more broadly based market in 

which the current price corresponds more closely to its true value. Because this price 

influences production, storage, and consumption decisions, derivatives markets 

contribute to the efficient allocation of resources in the economy. 

Nonetheless, the tightened cross-market linkages that result from derivatives trading also 

fuel a common public and regulatory perception that derivatives generate or exacerbate 

volatility in the underlying asset market. These concerns are often voiced in the context 

of their "destabilizing" effects around major declines in the market. Following the 1987 

stock market crash, for example, John Shad, former chairman of the Securities and 

Exchange Commission argued, "Futures and options are the tail wagging the dog. They 

have escalated the leverage and volatility of the markets to precipitous, unacceptable 

levels" (Wall Street Journal, 1988). This concern has led to studies commissioned by the 
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Securities and Exchange Commission, the Commodity Futures Trading Commission, and 

a presidential task force; it also has been a driving force behind the adoption of program 

trading curbs, circuit breakers, and daily price limits in the futures markets, and the 

staggering of stock index futures and options expirations. 

There exists little theoretical or empirical evidence, however, to justify these actions. In 

perfect markets, derivatives should have no effect on the underlying asset market because 

they are redundant securities (i.e., they can be synthetically created by some combination 

of the asset and riskless bonds). With market imperfections, derivatives make the market 

more complete (Ross, 1976; Hakansson, 1982) by allowing investment choices that were 

previously cost inefficient or impossible due to regulatory or institutional constraints. 

Since investors benefit from an expanded opportunity set, the required returns and risks 

in existing asset markets should fall. In addition, Danthine (1978) argues that derivatives, 

by promoting information-based trading, increase the depth and liquidity of the market 

and reduce volatility. Grossman (1988) shows that option trading allows diverse opinions 

about volatility to be revealed that can reduce volatility. Detemple and Selden (1991) 

show that option trading can allow more efficient risk sharing, which increases the 

demand for the asset and reduces volatility. Stein (1987) is the only theoretical study that 

implies volatility could increase, arguing that poorly informed speculators can have a 

destabilizing effect on the market. 

The empirical evidence is generally consistent with these theoretical implications. The 

evidence tends to focus on stock option introductions due to the large quantity of listing 

events, and most of these studies (e.g., Skinner, 1989; Conrad, 1989) find a reduction in 

volatility following introduction. In addition, Damodaran and Lim (1991) and Skinner 

(1990), respectively, find that the speed with which information is incorporated into price 

and the accuracy of this information increase after options are introduced. Kumar, Sarin, 

and Shastri (1998) find a decrease in the adverse selection component of the bid-ask 

spread and a reduction in the pricing error variance after option introduction, signaling an 

improvement in pricing efficiency and market quality. In other markets, Edwards (1988) 

finds reductions in volatility following the introductions of stock index futures and 
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treasury bill futures, while Harris (1989) shows that the volatility of S&P 500 stocks 

increased after the introduction of S&P 500 futures. 

There is also evidence that volatility decreases when the trading activity in existing 

derivatives markets increases. Bessembinder and Seguin (1992), for example, find that 

stock market volatility is inversely related to both the open interest and trading volume of 

S&P 500 futures after controlling for spot market volume. Bessembinder and Seguin 

(1993) find that spot volatility is positively related to unexpected volume and negatively 

related to expected open interest for eight currency, interest rate, and commodity futures 

contracts. For the currency and agricultural contracts, spot volatility decreases when 

unexpected open interest increases. These findings indicate that futures trading increases 

the depth and liquidity of the underlying asset market, mitigating the impact of volume 

shocks on volatility. 

In general, there is little research regarding physical commodity derivatives, and this 

research is primarily focused on agricultural futures contracts. For our analysis of the 

energy markets, there are at least two reasons we might expect results that differ from 

past research. First, in these markets, it is difficult to trade on "bad news" that would 

negatively affect the market price without using derivative securities. Therefore, if 

derivatives provide benefits of increased informational efficiency, their effects may be 

more pronounced in the energy markets. Second, there tend to be strong informational 

linkages across energy markets. Information that affects crude oil prices can also affect, 

say, natural gas or heating oil prices. Given these linkages, the introduction of natural gas 

or heating oil derivatives could influence the crude oil market by its effect on the transfer 

of information across markets. 

To examine the effect of derivative introductions in these markets, we must address two 

complications. First, in a typical event study, we average the abnormal effects around an 

event across many observations to control for factors other than the event. This is not 

possible here. The introduction of a given energy derivative contract only happens once, 

and we have only one price history from which to draw our inference. In essence, our 

event study has a sample size of one. Second, the timing of the oil futures introduction 
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closely corresponds with that of the degregulation of the U.S. oil market. Therefore, our 

sample of "free-floating" spot prices extends just a year prior to the introduction. 

We address these complications by fitting a stochastic volatility model to the sample of 

postintroduction prices. The model controls for the time-series structure of volatility, 

capturing the nature of volatility persistence, mean reversion in volatility, and the 

volatility of volatility in the crude oil market. We then examine whether, given the 

structure imposed by the model, the volatility shocks around the futures contract 

introduction date seem abnormal. By using just the postintroduction sample for 

estimation, the fitted model is not influenced by the volatility process that prevailed at the 

time of introduction. However, if this process is consistent with the postintroduction 

process and the introduction had no effect on volatility, then the innovations around the 

introduction date should not appear unusual. 

Our results indicate that volatility increased after the introduction of crude oil futures. 

Positive abnormal volatility shocks are observed for 3 consecutive weeks following the 

introduction. We also find evidence of a much longer term (more than a year) volatility 

increase, but it is inappropriate to simply attribute this effect to derivatives. The increase 

coincides with the growth of the energy derivatives markets, which was spurred by 

volatility induced by continuing deregulation of the energy markets. Given this linkage, it 

is difficult to disentangle the cause from the effect. After the introduction of crude oil 

futures, there is little evidence that subsequent introductions had any effect on oil market 

volatility. In particular, we find no volatility effects around the introduction of crude oil 

options and no pattern in the effects across the time series of introductions on other 

energy products. This evidence contradicts the idea that subsequent introductions should 

gradually complete the market. 

To assess the impact of derivatives on the crude oil market more fully, we also examine 

the ongoing dynamics between futures trading activity and spot market volatility. This 

analysis reveals a strong positive relation between unexpected futures volume and 

unexpected volatility. This relation is weaker, but still positive, for the long-term trend 

and expected volume components. We also find evidence of asymmetry in the volume-
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volatility relation. Specifically, an increase in unexpected volume is associated with an 

increase in spot market volatility that is 80% larger than the decrease in volatility 

associated with an equivalent decrease in unexpected volume. 

In contrast to the volume-volatility relation, we find that the overall size of the crude oil 

futures market (measured by open interest) is negatively related to spot market volatility. 

The relation is strongest for the unexpected component of open interest, but is also 

present for the long-term trend and expected open interest. This finding indicates that the 

futures market provides depth and liquidity to the crude oil market. Moreover, when 

combined with the positive volume-volatility relation, it implies that the unexpected 

change in open interest for a given shock to futures volume either mitigates or amplifies 

the effect on spot volatility. For example, the volatility increase associated with 

unexpected volume is approximately 40% less when it is accompanied by an unexpected 

increase in open interest than when open interest remains unchanged. This result may 

reflect not only changes in market depth but also the nature of the trades that accompany 

the increased volume. 

The remainder of this study is organized as follows. The second section describes the 

data used in our analysis and some preliminary evidence regarding the structure of crude 

oil volatility. The third section develops our stochastic volatility model for the oil market, 

our estimation strategy, and the estimation results. The fourth section examines the 

effects of energy derivative introductions on crude oil market volatility, and the fifth 

section examines the depth and liquidity effects of derivatives trading on the crude oil 

market. The last section provides a summary and conclusions. 

Data and Preliminary Analysis 

Table 1 lists the primary energy futures and futures option contracts along with their 

respective introduction dates. Each of these contracts is traded at either the New York 

Mercantile Exchange (NYMEX) or the International Petroleum Exchange (IPE). Our 

study focuses on the West Texas Intermediate (WTI) crude oil market, the commodity 

underlying the NYMEX crude oil futures contract. The contract is denominated in 1,000 
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U.S. barrels (42,000 gal) of light, sweet crude oil for delivery in Cushing, Oklahoma. 

Futures contracts are currently traded for 30 consecutive months plus five long-dated 

maturities extending out 7 years. 

To examine the effect of derivative introductions on the oil market, we need a sample of 

spot oil prices that begins prior to the introduction of crude oil futures. Reliable data for 

this period are scarce because the introduction closely coincides with the deregulation of 

the U.S. oil market. Although the Wall Street Journal and several industry publications 

reported "posted prices" prior to deregulation, these prices do not necessarily represent 

actual spot market prices. The data we use for this analysis are from DataStream 

International. Prices for WTI near (oil for prompt month delivery) are available on a 

weekly basis beginning February 2, 1982, and on a daily basis beginning September 1, 

1983. Daily spot prices for sweet Cushing crude begin April 5, 1983. For the oil futures 

introduction analysis, we use the weekly WTI prices and to maintain consistency, we use 

the daily WTI prices to examine subsequent introductions. For our analysis of the relation 

between futures trading activity and spot market volatility, we use the daily sweet 

Cushing prices and the total daily futures volume and open interest across all available 

NYMEX crude oil contracts. These futures data also are obtained from DataStream 

International. All of our data series extends through the end of 1997. In addition, we 

obtained annual world oil production data from the American Petroleum Institute’s Basic 

Petroleum Data Book. 

Summary Statistics 

Table 2 summarizes the price series used for our analysis. Over the course of our sample 

period, crude oil prices fell from nearly $34 per barrel in 1982 to under $18 by the end of 

1997, an average annual return of about -4%. Oil prices ranged from a low of $10.80 in 

July 1986 to a high of $40.85 in October 1990. The high variability of oil prices relative 

to most financial assets is apparent from the annual returns reported in Table 2. Prices 

increased more than 25% during three different years of the sample, and they fell by 35-

40% in three others. 
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Our first objective is to examine the volatility of oil returns. There is considerable 

evidence that volatility changes over time, but conditional volatility is not observable, 

and we must rely on estimates to examine the nature of time variation. The most common 

approach (e.g., Poterba & Summers, 1986; French, Schwert, & Stambaugh, 1987) is to 

consider the standard deviation of returns over a fixed window of observations. Table 2 

reports these standard deviations for each year of our sample. No real patterns are 

apparent, except perhaps that the estimates appear to be relatively low in the first couple 

years. It is difficult, however, to attribute the subsequent increase in standard deviation to 

the introduction of oil futures in 1983. The estimates are quite noisy, and the standard 

deviations based on weekly observations actually indicate a reduction in volatility in 

1983, and again in 1984. After this, the estimates range from 50-60% in 1986, 1990, and 

1991, down to about 20% in 1992 and 1995. 

Rolling Volatility Estimates 

Relying on the standard deviation to detect variation in conditional volatility is 

problematic because it assumes volatility is constant within each estimation window (i.e., 

a year). We can reduce this problem by shortening the window length, but a reasonable 

number of data points are required within each window to obtain precise estimates. We 

address these issues by adopting a "rolling" estimation approach. We use a window of 

observations around time t to estimate the conditional volatility, σ t, and we move the 

window forward one period to estimate σ t+1. Because volatility time varies within each 

window, observations nearer to t should convey more information about σ t. We 

accommodate this by giving more weight to these observations in forming our estimate of 

σ t. Foster and Nelson (1996) show that under reasonable smoothness restrictions, this 

approach yields consistent and asymptotically normal estimators. 

To apply the rolling estimation approach, we define the estimator, 

  (1) 
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 where rt + l and µ t + l, respectively, are the conditional return and mean return, ω t + l is the 

weight placed on the innovation at time t + l, and T is the number of observations in the 

sample. Foster and Nelson (1996) show that if volatility is stochastic, the optimal 

weighting function for a two-sided rolling estimator is  

ω t+l = (α t / 2)e–α t| l |, (2) 

where α t is the decay rate. This estimator is two-sided because it uses both leads and lags 

of rt to estimate σ t
2. To construct a one-sided estimator (i.e., based only on past 

information), we set ω t+l = 0 for l > 0, and double each of the weights for l ≤ 0. 

Foster and Nelson (1996) show that the optimal choice of α t is φ t / θ t, where φ t
2 is the 

conditional variance of volatility innovations and (θ t
2

 + σ t
4) / σ t

4 is the conditional 

coefficient of returns kurtosis. We eliminate the time dependency in α t by assuming the 

volatility innovations are proportional to volatility (φ t = φ σ t
2) and the coefficient of 

kurtosis is constant (θ t = θ σ t
2). If we also assume that the conditional distribution of 

returns is normal (θ = 2), then setting α t = φ / 2 is optimal. Using the estimation 

procedure developed in Fleming, Kirby, and Ostdiek (1998b) yields α = 0.1155 for daily 

returns, and α = 0.1443 for weekly returns. 

Figure 1 plots the time series of rolling, exponentially weighted volatility estimates 

obtained from Equation 1. The trends in the daily estimates (Panel A) and the weekly 

estimates (Panel B) are similar. (Note the difference in x-axis due to the earlier start of 

the weekly sample.) The largest volatility shocks occur in 1986, when oil prices fell by 

nearly $10 per bbl, and in 1990, following Iraq’s invasion of Kuwait. Aside from these, 

there is a general upward trend from 1984 through 1988, with a sharp swing from 1989 to 

1991 and relatively steady, lower volatility thereafter. The most significant difference in 

the daily and weekly estimates occurs in 1996, when several large, 2-to-3-day price 

swings are not detected with weekly observations. 

The patterns shown in Figure 1 are generally consistent with the standard deviations 

reported in Table 2, but two additional features of volatility are now observable. First, the 
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time-series estimates in Figure 1 allow us to detect finer variations in volatility. We can 

see, for example, that weekly volatility is locally high at the beginning of 1983 (prior to 

the introduction of crude oil futures) and then falls steadily over the remainder of the year. 

Second, we can observe stylized facts regarding the time-series structure of volatility. In 

particular, like most financial time series, crude oil volatility is persistent and tends to 

mean-revert over time. These observations motivate our strategy for evaluating the effect 

of derivative introductions on volatility. Specifically, we must model the time-series 

structure of volatility in order to evaluate whether any variation around the introduction 

date is unusual. 

A Stochastic Volatility Model  

In this section, we develop and estimate a stochastic volatility model for the crude oil 

market. The model captures the structure of mean reversion, persistence, and volatility of 

volatility apparent in the data, and allows us to assess whether the volatility realizations 

following the introduction of energy derivatives are inconsistent with this structure. We 

begin by outlining the specification and the intuition behind the model. Then, we describe 

our estimation strategy and results. Finally, we generate the volatility residuals under the 

model and examine whether the model adequately captures the time-series structure of 

volatility in the oil market. 

The Stochastic Volatility Specification 

Our analysis is based on the volatility model developed in Fleming, Kirby, and Ostdiek 

(in press). The setup is similar to Clark (1973) and Tauchen and Pitts (1983), where we 

have an economy that consists of a large number of active speculators with 

heterogeneous expectations about asset value. As new information arrives in the market, 

traders revise their expectations and initiate a round of trading. Over the course of a day, 

these information arrivals generate a large number of unpredictable price changes. If we 

let ε it represent the incremental return generated by event i, then the return on day t can 

be modeled as 

 10



THE IMPACT OF ENERGY DERIVATIVES ON THE CRUDE OIL MARKET 
 

, (3) 

where It is the number of information events that occur. We assume ε t is iid normal with 

mean zero and variance σ ε 2, but note that because we can rewrite the summation in 

Equation 3 as σ ε zt , where zt ≡ 1/ the central limit theorem implies zt 

N(0,1) as It ∞ . Therefore, even if ε t is nonnormal and exhibits weak forms of 

serial dependence, the conditional distribution of rt should be approximately normal with 

mean mean µ t and variance σ ε 2 It. 

We impose more time-series structure by exploiting the relation between information 

flow and the volatility of returns (σ t = σ ε ). As noted above, volatility is persistent and 

empirical research indicates that increases in volatility are more likely than decreases of 

the same magnitude (i.e., asymmetry). We capture these features by focusing on the 

representation, 

 rt = µ t + exp( ht) zt, (4) 

where ht ≡ ln σ t
2, and modeling ht as an AR(1) process, 

 ht = γ + φ h ht–1 + ut, (5) 

where ut is iid with mean zero and independent of zt. 

The AR(1) structure in equation (5) yields a volatility specification that is similar in many 

respects to an EGARCH model (Nelson, 1991). Volatility is constrained to be 

nonnegative: it follows an exponential autoregressive process and is asymmetric in levels. 

An important difference, however, is that under our model, volatility is stochastic rather 

than known conditional on past prices. This feature is attractive because the information 

flow to financial markets is unpredictable and it is information that generates volatility. 

As a result, our specification may better capture salient features of the return generating 

process. 
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Model Estimation 

We estimate and test our volatility specification by forming a set of moment restrictions 

from Equations 4 and 5 and applying Hansen’s (1982) generalized method of moments 

(GMM). We assume |φ h | < 1 in Equation 5, so ht is stationary with mean µ h = γ (1 – φ h ) 

and variance σ h
2 = σ u

2
 (1 – φ h

2
 ). The autocorrelation of return innovations is zero at all 

lags, but there can be a substantial degree of higher-order dependence apparent in the 

logarithm of squared returns, 

ln r 
2
t = ht + ln z 

2
t. (6) 

Because zt is standard normal, the mean and variance of ln z 
2

t are -1.27 and 4.93 

(Abramowitz and Stegun, 1972). Defining yt ≡ ln r 
2

t – E[ln z 
2

t ], we obtain the 

transformed system 

(7) 

where ξ t ≡ ln z 
2

t – E[ln z 
2

t ], is mean zero with variance 4.93 and independent of ht. 

Under our stated assumptions, we can obtain the following moment restrictions for yt:

(8) 

for all integers k > 0. 

To impose these moment restrictions and estimate the parameters of the model, we define 

the GMM disturbance vector, 

(9) 

where θ = [µ h, h2, φ h]′ is the vector of unknown parameters, k = 1, 2, Ö , l counts the 

number of autocorrelation restrictions used in the estimation, and σ ξ 2 = 4.93. The first 
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two restrictions identify the mean and variance of the log volatility, ht, and the l 

remaining restrictions identify the AR(1) parameter of the ht process, φ h. 

We construct the yt series used in the estimation by removing from the raw data any 

seasonal patterns in returns and volatility. First, we remove returns seasonality by using 

the residuals from a regression of raw returns on six variables: a dummy variable for each 

weekday and a variable that counts the number of nontrading days between observations. 

Second, we remove volatility seasonality by regressing these residuals on the Monday 

dummy and nontrading day variables. Adding 1.27 to the intercept and residuals from 

this regression yields the seasonally adjusted series that we use in the estimation. 

We estimate the system by minimizing gT(θ )′ gT(θ )′ where gT(θ )′ ≡ and 
is a consistent estimate of the GMM covariance matrix. For the asymptotic distribution 

theory of GMM to hold, we assume that the series is stationary and ergodic and that the 

regularity conditions in Hansen (1982) are satisfied. Our choice of adjusts for 

conditional heteroskedasticity and autocorrelation using Parzens weights and Andrews’s 

(1991) method of band-width selection. The system in Equation 9 has l + 2 moment 

conditions and three unknown parameters, leaving l – 1 overidentifying restrictions. As a 

result, the GMM procedure yields a direct test for specification error in the form of an 

overidentifying test statistic (Hansen, 1982). Since there is no theoretical guidance for 

choosing the optimal l, we estimate the system using l = 10, 20, 30, and 40 for daily 

observations and l = 12, 16, 20, and 24 for weekly observations. 

Table 3 reports the estimation results. In general, the parameter estimates are fairly 

insensitive to the lag length. The mean of ht is stable, and although φ h increases slightly 

for longer lags at the daily level, no such pattern is apparent at the weekly level. All of 

the estimates of φ h indicate a slow decay in the autocorrelation function of ht, suggesting 

a long lag length is necessary to capture the persistence of volatility. Therefore, for the 

remainder of the study, we rely on the estimation results using l = 40 for daily returns and 

l = 24 for weekly returns. These lag lengths encompass periods of about 2 months and 6 

months, respectively. 
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The final two lines in each panel of Table 3 report the overidentifying test statistics for 

our stochastic volatility model. None of these statistics indicate rejection. The statistics 

become less significant with longer lag lengths, but this is consistent with our argument 

that longer lags are necessary to capture the strong volatility persistence. Therefore, we 

conclude that the GMM estimation reveals little evidence of model misspecification. 

Fitted Volatilities 

We now want to use our fitted volatility model to evaluate whether the residuals under 

the model seem abnormal following the introduction of derivatives. Although our GMM 

approach yields parameter estimates for the model, it does not produce a fitted time-series 

of volatility estimates (or residuals). We generate these estimates using the Kalman filter. 

To fit the filter to our stochastic volatility specification, we express Equation 7 as 

yt= ht + ξ t

 ht = µ h(1 – φ h) + φ h ht – 1 + ut, (10) 

where µ h(1 – φ h) = γ h is the constant in the AR(1) specification of volatility. We 

parameterize Equation 10 using the consistent estimates obtained from our GMM 

analysis. The filtering algorithm takes the observed yt series and, for each day in the 

sample, delivers two estimates of ht. The first estimate is the best linear forecast of ht 

given all of the data available through time t – 1 (i.e., a one-sided estimate). The second, 

commonly called the smoothed estimate, is the best linear estimate based on the entire 

sample (i.e., a two-sided estimate). 

Figure 2 plots the fitted volatilities. Comparing these estimates to the rolling volatility 

estimates in Figure 1 (note that the y scales for the two figures are slightly different) 

reveals that the fitted volatilities exhibit less time series variation. In other words, we 

observe fewer extreme volatilities in Figure 2. This should not be surprising, however, 

since the Kalman filter procedure generates a best linear fit of the unobservable volatility 

at each point, and, therefore, unusual price changes influence this estimate less than they 
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influence the rolling estimate. Aside from this difference, the patterns shown in Figures 1 

and 2 are generally comparable. 

Diagnostics 

As a final robustness check before using the Kalman filter estimates to evaluate the effect 

of derivative introductions, we conduct a series of specification tests similar to those used 

to evaluate GARCH models. Our model implies that the time t return is drawn from a 

normal distribution with mean µ t and variance It. Therefore, if the model is well-

specified, the standardized, seasonally adjusted returns (zt) should be iid normal with 

mean zero and variance one. We construct the zt series from our Kalman filter estimates 

of ht, 

zt = (11) 

 The second term in the denominator accounts for volatility seasonalities and is the same 

adjustment we used to compute the yt series for the GMM estimation. If our model is well 

specified, the moments of zt should match those of a standard normal random variable. 

Table 4 reports the specification results for both daily (Panel A) and weekly (Panel B) 

data sets. The first four columns report the mean, variance, skewness, and excess kurtosis 

of zt (and the smoothed estimates, zt
*), and the final three columns report the 

autocorrelations of the series, its absolute values, and its squared values. As a benchmark 

for comparison, we also report these statistics for the nonstandardized, seasonally 

adjusted returns. Focusing on the standardized returns, both the one-sided and smoothed 

series exhibit substantial departures from normality. In particular, for each series, the 

variance is greater than one and both the skewness and excess kurtosis are positive. 

We evaluate the significance of these results using simulations. We use our GMM 

estimates to parameterize the return generating process in equations (4) and (5), and we 

simulate realizations of zt and ut to generate the ht and yt series. We then apply the 

Kalman filter to this yt series to estimate ht, we construct the standardized returns (zt), and 

we compute each of the statistics reported in Table 4. We repeat this simulation 5,000 
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times. In Table 4, under each statistic, we report the probability of realizing in the 

simulations a value lower than that observed in the data. These probabilities indicate that 

the variance, skewness, and kurtosis of both daily and weekly returns are significantly 

greater than we would expect under the model, as are the autocorrelations of absolute and 

squared daily returns. 

Despite these findings, there is also evidence that the model captures many features of 

observed returns. The deseasonalized returns ( r ) reported in Table 4 evidence large 

degrees of skewness and excess kurtosis at both the daily and weekly levels. The model 

explains much of this behavior, for example, reducing the skewness in daily returns by a 

factor of 17 and the excess kurtosis by a factor of 6. The model also reduces the 

intertemporal dependence apparent in squared daily returns and absolute and squared 

weekly returns, and the mean reversion apparent in weekly returns. These findings 

indicate that although there is evidence of misspecification, the model performs rather 

well given its simple AR(1) structure. 

 

The Effects of Derivative Introductions on Crude Oil Volatility 

Introduction of Crude Oil Futures 

We now use our stochastic volatility model to evaluate the effect of energy derivative 

introductions on the structure of crude oil volatility. We focus first on the introduction of 

crude oil futures on March 30, 1983. Our strategy is as follows. We first fit our stochastic 

volatility model using the postintroduction sample of weekly data. We then use the 

resulting parameter estimates to calibrate the Kalman filter and estimate the weekly series 

of ht for the entire sample (both pre- and postintroduction). Finally, we evaluate the 

significance of the ht realizations subsequent to the introduction date. If the structure of 

volatility changed following the introduction, then these realizations will be inconsistent 

with our fitted model. 
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The GMM estimation results using the postintroduction sample (770 observations) are 

similar to those reported in Table 3 using the entire sample (829 observations). For a lag 

length of l = 24, the estimates of µ h, σ h
2, and φ h, respectively, are -6.8652, 1.4169, and 

0.9562. The largest change from the overall sample is for the σ h
2 estimate, but with a 

standard error over 0.26, this change is not statistically significant. The J statistic for the 

postintroduction period is 16.66 (p value = 0.8256). These findings suggest that 

excluding the preintroduction sample does not meaningfully alter our fitted stochastic 

volatility model. 

We now use these fitted parameter estimates in our Kalman filter procedure to estimate 

the ht series for the entire sample (both pre- and postintroduction). For this analysis, we 

use the one-sided (rather than the smoothed) estimates from the filter, so the current 

volatility estimates are not influenced by future innovations. On the last Friday before 

the introduction of crude oil futures, March 25, 1983, our estimate of ht is -9.3070, which 

implies an annualized volatility rate of exp( ht)  = 6.87%. Now, we need to 

determine whether the next k volatility realizations, conditioned on σ t, are consistent 

with our fitted volatility model. 

Fleming, Kirby, and Ostdiek (1998) demonstrate that, under the model, 

(12) 

Given the volatility level on March 25, the E[ ht+k | ht ] in Equation 12 implies a volatility 

for the following week of 7.25%. The realized volatility was greater than expected, 

8.70%. Using the distribution in Equation 12, the probability of realizing a volatility less 

than 8.70% is 0.8534. This indicates that the increase in volatility during this week was 

not statistically significant. 

It may be misleading, however, to use the analytical distribution in Equation 12 to 

measure abnormal volatility. Our fitted volatilities are measured with error because we 

first estimate the parameters of our volatility model, and then we use the Kalman filter to 
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estimate the true ht series. This yields a fitted ht series that is "smoother" than the true 

(but unobservable) one. To assess the impact of these issues, we compare the distribution 

of ht+1 – E[ ht+1 | ht ] innovations under Equation 12 to the empirical distribution. Across 

the entire postintroduction sample, less than 1% of the realizations fall in the upper 10% 

of the analytical distribution, and only 4% of the realizations fall in the lower 10%. This 

finding indicates that the distribution of the fitted ht series is indeed quite different than 

the analytical distribution. 

To control for this difference, we use the empirical distribution of the fitted volatility 

innovations to determine whether volatility around the introduction date is abnormal. We 

use our fitted model, and the fitted ht series, to compute the realized ut under Equation 10. 

We then simulate the empirical distribution by drawing (with replacement) from the 

sample of ut realizations beginning 1 year after the introduction date. Starting from ht, we 

generate a sequence ut+1, Ö , ut+52, and use Equation 10 to compute the corresponding ht+1, 

Ö , ht+52. Repeating this process 5,000 times, we approximate the distribution of ht+k | ht 

for k = 1, Ö , 52. 

The second, third, and fourth columns of Table 5, respectively, report the fitted 

volatilities and their simulated expected values and probabilities for the 52 weeks 

following the introduction of crude oil futures. The second line, for example, shows the 

increase in volatility from 6.87% to 8.70% during the first week. Based on the empirical 

distribution, this increase appears to be abnormally high (p value = 0.9704). During the 

following 3 weeks, volatility continued to increase, up to 14.52%. This realization, given 

σ t = 6.87%, is also significant (p value = 0.9966). By the 12th week, however, volatility 

fell to 6.27%, and the volatilities realized after this date perhaps seem unusually low 

rather than high. 

The average volatility statistics, reported in the final three columns of Table 5, allow us 

to address whether the average realization during the subsequent k weeks (rather than just 

the endpoint) is abnormal. We approximate the distribution of the average volatility using 

the same simulations as before, except now for each ht+k realization we compute the 

average of σ t+1, Ö , σ t+k. Consistent with the individual realizations, the average volatility 
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over the first 4 weeks is significantly greater than expected. This similarity is not 

surprising since volatility follows a fairly direct path in reaching σ t+4. The average 

volatility through t + 24, on the other hand, is less abnormal than the σ t+24 realization. 

This occurs because volatility increases sharply and then decreases sharply to reach σ t+24. 

After 52 weeks, the average volatility, like σ t+52, seems unusually low. The actual level 

of volatility increases over this period, however, the initial volatility (σ t = 6.87%) is 

below the long-term mean (σ = 23.29%), and the rate of mean reversion is slower than 

expected under our stochastic volatility model. 

Conditional on σ t, both the realized and average volatility through t + k and t + k + 1 are 

correlated. To focus purely on the innovations between any two dates, we also consider 

the expected step-ahead realizations (i.e., E[σ t+k+1 | σ t+k ]). These expected values, and the 

realized p values, are reported in the fifth and sixth columns of Table 5. This evidence 

indicates that the most unlikely sequence of innovations occur in the first 3 weeks after 

the introduction (p values of 0.9704, 0.9128, and 0.9692). If we assume these innovations 

are iid normal, then the sum of their squared, standardized values is distributed χ 3
2. The 

realized value is 8.8981, and the probability of realizing a value this high is just 0.0307. 

Over the remaining 49 weeks, the sequence of step-ahead realizations exhibit no apparent 

pattern. 

Based on this evidence, we conclude that volatility indeed increased following the 

introduction of crude oil futures. The increase is prominent over the first 3 to 4 weeks, 

although an isolated sharp volatility drop occurs in the 12th week. As a result of this drop, 

the realized and average volatilities after a year seem lower than expected. This finding 

may, in part, actually be symptomatic of a longer term volatility increase following the 

introduction. Trading activity was thin during the first year of the oil futures market, but 

both volume and open interest grew by 500% after the first year and by over 2,500% after 

5 years. Therefore, any volatility effects in the spot market might develop over a period 

of time. Because our model estimation is based on the entire postintroduction sample, 

these effects would be present in the model but not in the data during the first year. 
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Volatility may seem low during this year only because it fails to revert toward this higher, 

long-term mean volatility. 

Subsequent Energy Derivative Introductions 

Next, we examine the effect of other energy derivatives introduced after crude oil futures. 

If our previous results are due to increasing market completeness, we might expect 

similar results following the introduction of crude oil options. Options may further 

complete the market because they allow a one-sided payoff structure that may be difficult 

or costly to create when there are market imperfections. Moreover, crude oil prices are 

correlated with other energy prices, and introducing derivatives on these assets may 

affect crude oil volatility. Detemple and Jorion (1990) and Detemple and Selden (1991) 

model these direct and cross-market interactions. They show that the volatility effects 

should be greatest following the first derivative introduction, and that the effects should 

decay with subsequent introductions as the market gradually becomes more complete. 

To investigate these issues, we apply our methodology to each of the subsequent 

introduction dates reported in Table 1. The only difference is that each of these 

introductions occurs after the start of our daily crude oil price series, so we use the daily 

prices (rather than weekly) in this analysis. For each introduction date, we begin by 

fitting our stochastic volatility model to the postintroduction sample (i.e., for unleaded 

gas futures, the sample is December 3, 1984, to December 31, 1997). We then use the 

resulting parameter estimates to calibrate the Kalman filter and estimate the daily ht series 

for the entire sample. Finally, we evaluate the significance of the ht realizations during 

the period following the introduction date. 

Table 6 reports the results. The "Model Parameters" columns in Panel A contain the 

GMM parameter estimates of our model for each of the introduction dates. In general, 

these estimates are similar to those reported in Table 3 for the overall sample, and there is 

not much variability across introduction dates. The only differences, perhaps, are the 

tendency toward a lower volatility of h, σ h , over time, and the dip in the AR(1) 
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coefficient, φ h, that occurs near the middle dates. As noted earlier, however, these 

differences are not statistically significant. 

The remaining columns of Panel A show the p values for the average volatility realized k 

= 1, 20, 40, Ö , 100 days after the introduction date. For the first introduction, unleaded 

gas futures, the average volatility is less than expected for the entire 100-day period in 

contrast to our findings for the introduction of crude oil futures. The source of this pattern 

is apparent from the p values reported in Panel B for the realized volatilities and the 

volatility innovations. After 20 days, the volatility level is abnormally low, but 

subsequent volatilities conform more closely with expectations. The only other 

marginally abnormal shock (p value = 0.063) occurs 120 days after the introduction. This 

shock, and the general trend of lower than expected volatilities for several months, is 

consistent with the long-term increase in volatility that we hypothesized earlier. Unlike 

our earlier results, however, volatility decreases initially after the introduction. This is 

inconsistent with the directional effect for crude oil futures although the evidence here is 

less conclusive. 

The introduction effects are even less apparent for the other introduction dates examined 

in Table 6. Few of the average or realized volatilities for these introductions are 

significantly different from what we expect. The primary exception is for natural gas 

futures, but the run-up in crude oil volatility following this date (April 3, 1990) can be 

attributed to Iraq’s invasion of Kuwait. Comparing the results across all introductions 

reveals no systematic patterns within postintroduction periods and no trends in the effects 

across introductions. This evidence provides little support for the hypothesis that the 

volatility effects should gradually disappear with subsequent introductions. Instead, the 

effects are ambiguous for the first introduction after crude oil futures, and they are not at 

all detectable for any others. 
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Analysis of Futures Trading Depth and Liquidity Effects 

Methodology 

In this section, we provide further evidence on the impact of derivatives on the crude oil 

market by examining the effect of futures trading on the market depth and liquidity. 

Specifically, we assess the relation between spot market volatility and changes in the size 

of the futures market (as represented by open interest) and trading volume. As Figure 3 

illustrates, both volume and open interest in NYMEX crude oil futures have increased 

dramatically since the inception of the contract. By 1990, the barrels of oil represented by 

NYMEX futures trades in one year actually exceeded the annual world production of oil. 

Figure 4 shows that this increasing trend has been accompanied by substantial variability 

in daily trading activity. We focus on the effect of this variability. 

Table 7 provides summary statistics for daily futures trading activity and spot volatility. 

The volume and open interest data represent aggregate amounts across all open NYMEX 

crude oil contracts, and the spot prices are for WTI sweet Cushing crude oil. We estimate 

the spot volatility by first fitting our stochastic volatility model to the daily Cushing 

returns, and then we use the parameter estimates in the Kalman filter to estimate the 

stochastic volatility time series. The parameter estimates using these data (µ h = –8.6140, 

σ h = 1.4801, φ h = 0.9853) are similar to those reported in Table 3 for the WTI near price 

series with 40 lags. 

The returns and volatilities reported in Table 7 exhibit the same general patterns as those 

for the WTI near series reported in Table 2. The volume and open interest statistics show 

the rapid growth in oil futures trading through the 1980s. In the first year of trading, 

average daily volume represented 1.7 million barrels of oil, and average daily open 

interest represented 8.8 million barrels. Both series peaked in 1994 with volume of 106.8 

million barrels and open interest of 411.6 million barrels. The standard deviations for 

both series substantially increased over this period as well. Finally, the autocorrelation 

statistics reveal strong persistence in the trading activity and volatility data. 
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To analyze the relation between futures trading activity and spot market volatility, we 

regress unexpected spot volatility (UVOLt) on the expected and unexpected components 

of futures volume and open interest (Ati), 

(13) 

We include daily dummy variables (dj) and lagged volatility shocks (UVOLt–k) to control 

for day-of-the-week effects and volatility persistence. We proxy for UVOLt by 

subtracting the one-sided, contemporaneous Kalman filter estimate (realized volatility on 

day t) from the one-step-ahead Kalman filter estimate (expected volatility on day t – 1). 

We distinguish between the expected and unexpected components of volume and open 

interest due to the high persistence in these variables. Following Bessembinder and 

Seguin (1992), we first detrend each series by subtracting its 100-day moving average, 

and then we fit an ARIMA model to estimate its expected and unexpected components. 

For both variables, the optimal fit is an ARIMA(0,1,21), which incorporates about 1 

month of data. We use the expected component from this model as a proxy for the 

predictable level of trading activity, and we use the unexpected component to proxy for 

the daily shock. We also include the 100-day moving average in the regression to 

represent longer term shifts in trading activity. Note that summing these three 

components yields the original trading activity series. 

Volume-Volatility and Open Interest-Volatility Relations 

The first set of columns in Table 8 reports the regression results for the raw trading 

activity series over the full sample. The raw series are scaled so the underlying unit is 1 

million futures contracts. The results indicate that the lagged unexpected volatilities and 

daily dummy variables in the regression are not significant. This is expected because we 

accounted for seasonalities and volatility persistence in constructing our unexpected 

volatility estimate. All of the trading activity variables, however, are highly significant. 

The moving average, expected, and unexpected components of volume are each 

significant at the 5% level. The coefficient estimates indicate that the effect of 
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unexpected volume on volatility is by far the strongest, nearly three times greater than the 

effect of the moving average component and nearly two times that of the expected 

component. This strong volume-volatility relation is influenced in part by the effect of 

spot market volume on volatility. We would expect a strong link between spot and 

futures market volumes, and we cannot isolate the marginal impact of futures volume 

without controlling for spot volume. 

In contrast to the volume coefficients, the coefficients on open interest are all 

significantly negative. Again, the magnitude of the coefficient on the unexpected 

component is much larger than the coefficients on the two predictable components 

(nearly five times the moving average component and two times the expected 

component). These estimates indicate that, conditional on futures volume, the long-term 

increase in open interest is related to lower spot market volatility, and that unexpected 

increases in open interest correspond to negative volatility shocks. Therefore, the 

volatility shock associated with a given volume is less when market depth increases. This 

finding is consistent with the results obtained by Bessembinder and Seguin (1992, 1993) 

for other markets and supports the idea that futures trading improves depth and liquidity 

in the underlying market rather than destabilizing the market. 

The negative coefficient on unexpected open interest indicates that an increase in open 

interest mitigates the impact of a volume shock on volatility. We can estimate the 

magnitude of this effect by comparing the coefficients on unexpected open interest and 

unexpected volume. Depending on whether open interest unexpectedly increases or 

decreases, the marginal impact of an unexpected volume of 1 million crude oil contracts 

on volatility is 1.8391 ± 0.7539 (or ± 41.0%). This effect of open interest on the volume-

volatility relation may reflect the nature of trades that increase end-of-the-day open 

interest. As Bessembinder and Seguin (1993) argue, open interest may not only proxy for 

market depth but also for uninformed trading. Many speculators are "day-traders" who 

exit their positions overnight, so open interest tends to reflect uninformed trading 

initiated by hedgers. To the extent this argument holds, we can distinguish between the 

price effects generated by informed versus uninformed trading in the crude oil market. 

Specifically, if an unexpected increase in volume is accompanied by an unexpected 
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increase in open interest, more of the unexpected volume is attributable to hedgers, and 

therefore the price revisions are smaller. 

Robustness Checks 

The summary statistics reported in Table 7 suggest some evidence of nonstationarity in 

the volume and open interest series across our sample. Figure 4 shows the daily volume 

(Panel A) and open interest (Panel B) over this period, revealing a pattern of increasing 

variance in both series. Detrending the series by the 100-day moving average removes 

nonstationarity in the mean but not in the variance. Therefore, as a sensitivity check, we 

repeat the analysis using the natural logarithms of volume and open interest. Again, after 

taking logs, we decompose each series into its expected and unexpected components. The 

regression results are reported in the second set of columns of Table 8. For the most part, 

these results are quite similar to those for the raw series. The coefficients for the futures 

volume components are all positive and significant, and the coefficients for the open 

interest components are all negative although the coefficient on unexpected open interest 

is now insignificant. 

Given this conflicting evidence on the relation between unexpected open interest and 

volatility, we repeat the analysis using a reduced sample beginning on April 4, 1988, 5 

years after the contract was introduced. Figure 4 and Table 7 suggest that this subsample 

may avoid the nonstationarity evident in the entire sample. The final two sets of columns 

in Table 8 report the regression results for the reduced sample using both the raw series 

and log transformations. In both cases, the original results are confirmed. The positive 

volume-volatility relation is apparent in the reduced sample, as is the negative open 

interest-volatility relation. For both the raw and log series, the magnitude of the 

coefficient on unexpected open interest is even larger than in the full sample. 

Asymmetries in the Volume-Volatility and Open Interest-Volatility Relations 

Many empirical studies have documented volatility asymmetries. Schwert (1989, 1990), 

for example, finds that expected volatility increases more with negative stock market 

returns than it decreases with equal-sized positive returns. Bessembinder and Seguin 
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(1993) find asymmetries in the relations between spot volatility and unexpected futures 

volume and open interest. To assess whether these asymmetries are apparent in the crude 

oil futures market, we include interactive dummy variables in our regression to allow the 

effects of unexpected volume and open interest on volatility to vary with the sign of the 

volume or open interest shock. These dummy variables equal zero for negative shocks or 

one for positive shocks. Table 9 reports the results. The coefficient for the unexpected 

series represents the marginal impact of a negative trading activity shock. To estimate the 

marginal impact of a positive shock, the coefficient on the interactive term is added to the 

coefficient on the corresponding unexpected activity series. 

The results indicate no significant asymmetry for unexpected open interest, but we do 

find asymmetry in the relation between volatility and unexpected volume. Specifically, 

the coefficient estimates indicate that the volatility increase associated with an 

unexpected increase in volume is 80% larger than the decrease in volatility associated 

with an equivalent unexpected decrease in volume. These findings are generally 

unchanged if we instead use either the log series of the trading activity variables or the 

reduced sample period. 

Conclusions  

Our empirical results address three aspects of the impact of energy derivatives trading on 

the crude oil market. First, we examine the effect of introducing crude oil futures on the 

structure of oil market volatility. Second, we assess whether this effect differs with 

subsequent derivative introductions, including crude oil options and derivatives on 

related energy commodities. Finally, we evaluate the ongoing relation between oil futures 

trading activity and the depth and liquidity of the crude oil market. 

Our results indicate large unexpected increases in volatility for 3 consecutive weeks after 

the introduction of crude oil futures. Under our stochastic volatility model, we expect 

volatility to increase over this period from 6.87% to 8.14%, but realized volatility 

increases to 13.16%. The probability of such a large increase is just 0.2%. We also find 

evidence of a longer term (more than a year) volatility increase that coincides with the 
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growth of the energy derivative markets. It is inappropriate, however, to attribute this 

effect to derivatives. Derivatives activity grew over this period as a means of managing 

increased volatility induced by deregulation of the U.S. energy markets. Given this 

linkage, we cannot conclude that derivatives caused this volatility. 

Following the introduction of crude oil futures, there is little evidence that subsequent 

derivative introductions had any effect on crude oil volatility. In particular, we find no 

effects following the introduction of crude oil options and no pattern in the effects across 

the time series of introductions of other energy derivatives. These results are counter to 

the idea that subsequent derivative introductions gradually complete the market. Instead, 

the effects are apparent following the first introduction but disappear for subsequent 

introductions. 

Our findings regarding the relation between futures trading activity and spot market 

volatility indicate that deep and liquid futures markets have a mitigating effect on 

volatility in the underlying market. We find a positive relation between futures volume 

and volatility, but we cannot determine the marginal impact of futures versus spot market 

volume because reliable spot volume data are unavailable. The relation between open 

interest and volatility, on the other hand, is large and negative. We find that the impact of 

volume on volatility is inversely related to both the unexpected change and long-term 

predictable component of open interest. Our estimates indicate that the volatility increase 

associated with an unexpected increase in volume is approximately 40% lower when 

accompanied by an unexpected increase in open interest than when the unexpected 

change in open interest is zero. These findings suggest that futures trading improves 

depth and liquidity in the underlying market, and they contradict the idea that derivatives 

destabilize the market. 
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