
Lithium Ion Battery Recycling 
Technology 2015

Current State and Future Prospects

Duncan Kushnir, kushnir@chalmers.se
Environmental Systems Analysis
Chalmers University of Technology
Dec, 2015

ESA REPORT # 2015:18 

mailto:kushnir@chalmers.se


Kushnir, D. (2015) Lithium Ion Battery Recycling Technology 2015: Current State and Future 
Prospects.  Environmental Systems Analysis. Chalmers University, Göteborg, Sweden. ESA 
REPORT # 2015:18 

This document may be cited as follows:



Document Purpose and Use

This document assembles key results 
from work during the Realize project, 
and references to state-of-the-art 
literature and data on lithium battery 
recycling processes.  The document 
itself is not peer reviewed, but most of 
the primary sources are.  

The intent is to function as a quick 
reference suitable for use by 
researchers and engineers. An 
overview of many topics relevant to 
lithium battery recycling is presented, 
along with links to primary sources.   

- Duncan Kushnir, curator

Realize is an interdisciplinary project 
aimed at finding viable paths to resource-
efficient recycling of vehicles.

Realize was funded by MISTRA, and ran 
from 2012-2015 with a consortium of 
industrial partners



LIST OF ACRONYMS

ADP Abiotic Depletion Potential

AP Acidification Potential

BMS Battery Management System

DMC Dimethyl Carbonate

EBRA the European Battery Recycling Association

EC Ethylene Carbonate

EEC European Economic Community

EES Electric Energy Storage

ELIBAMA European Li-Ion Battery Advanced Manufacturing

EOL End of Life

EP Eutrophication Potential

ESS Energy Storage System

EU European Union

EV Electric Vehicle

GHG Green House Gases

GREET GReenhouse Emissions and Energy in Transport 
(Argonne Lab Model)

GWP Global Warming Potential

HTP Human Toxicity Potential

LCA Life Cycle Analysis

LIB Lithium ion Batteries

NMP N-Methyl-2-pyrrolidone (common 
solvent)

PHEV Plug-in Hybrid Electric Vehicle

POCP Photochemical Ozone Creation Potential

PVDF Polyvinylidene fluoride

RECHARGE the International Association for 
Advanced Rechargeable Batteries

UN United Nations

WEEE Waste Electrical and Electronic 
Equipment
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Introduction

i. Brief introduction to lithium batteries

ii. Contents of a lithium battery

iii. Lithium chemistries and scarce 
materials

iv. Battery trends and projections

v. Legislation regarding lithium batteries

This section contains a concise 
introduction to lithium battery 
technology with a focus on the 
material contents of various 
components and battery 
chemistries.  Cells are the focus 
because other components in a 
battery pack have well 
established recycling chains.

Estimates of future battery 
production are included, along 
with links to relevant legislation 
regarding recycling them.
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Introductioni.  Brief introduction to lithium batteries

On recycling lithium ion batteries

Lithium batteries are at present the dominant potential solution for ending the 
dependence of transport systems on fossil fuels. Vehicles containing lithium 
batteries account for only a tiny fraction of vehicles put on market today, but their 
share seems set to grow rapidly. In time, lithium batteries may represent fairly 
large material flows in the ELV system, and, as they may contain a number of 
strategic metals, the question of how to recycle them and ensure circular flows of 
materials deserves some foresight.  Alongside this reason, batteries also contain a 
number of potentially hazardous materials, making recycling an imperative for 
other reasons as well.

There are some ‘off the shelf’ solutions for recycling at present, but the actors 
involved charge gate fees of approximately 4€/kg of battery, and the processes 
used can not reclaim all of the metals in batteries.  What are the prospects of 
reclaiming these metals? Of achieving cost effective recycling?
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Introduction

• LIBs (Lithium-Ion batteries) are rechargeable batteries that store energy through
reversible intercalation of lithium ions. 

• LIBs  do not involve full redox reactions and thus manage to avoid many of the 
lifetime and power limiting problems of fully chemical battery mechanisms

• The ratio of ionization potential to atomic weight for lithium is higher than that 
for any other element, resulting in energy densities that will be difficult to match 
with any other electric storage technique

i.  Brief introduction to lithium batteries

Lithium ion batteries are an ideal system for electricity storage 
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Cathode/Anode: ’Active materials’ intercalating Li+ ions
(various)

Electrolyte: solid or liquid allowing movement of Li+ ions
(DMC/EMC or solid polymer)

Separator: restricts movement of other species
(Polymer e.g. Nafion)

Current collectors: conduct electrons to and from cathode, anode
(Cu, Al)

Casing: holds other items together
(Steel, Al, Plastic)

The main elements of a lithium cell are:

Most cells share common components in terms of the electrolyte, separator, foils and 
casing. What ultimately differentiates cell technologies is the material chosen for the 
‘active materials’, e.g. the cathode and anode.
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ii.  Contents of lithium batteries

Introduction



The remaining components in battery packs are to encase, 
cool, control, and distribute loads to the cells
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ii.  Contents of lithium batteries
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Cathode materials are typically chosen to match the 
application 

Material Abbrev. Voltage

vs Li/Li+

Specific 
Capacity 
(mAh/g)

Advantages Disadvantages

LiCoO2 LCO 3.9 140 Performance, well 
understood

Safety, uses nickel and 
cobalt

LiNi0.33Mn0.33Co0.33O2
NMC(333) 3.8 160-170 Better safety and 

performance than LCO 
Cost, nickel and cobalt

LiFePO4
LFP 3.4 170 Excellent power,  

lifetime and safety, 
abundant materials

Low energy density

LiMn2O4
LMO 4.1 100-120 Cheap, abundant, high 

power
Lifetime, low capacity 
means low energy density

- future possibilities -

LiNi0.8Co0.15Al0.05O2
NCA 3.8 180-200 High capacity and 

voltage, high power
Safety, cost, uses nickel 
and cobalt
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ii.  Contents of lithium batteries
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A carbon is nearly always chosen for the anode.  Materials 
such as LTO offer lifetime and power at the expense of energy 
density and cost.

Material Abbrev. Voltage

vs Li/Li+

Specific 
Capacity 
(mAh/g)

Advantages Disadvantages

Graphite G 0.1 370 Decent lifetime, well 
understood, abundant

Inefficiency due to SEI 
formation

Li4Ti5O12 LTO 1.5 170 Excellent power and 
cycle life

Lower voltage means less 
energy, cost

- future possibilities -

LiFeSiO4 LFS 0.3 up to 2000+ Vastly better energy 
density than traditional 
anodes

Very short lifetime at 
present
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Material value in several cell chemistries

Calculated by taking the 
market price of the pure 
material (Dec 2014) 
multiplied by the mass 
percentage in the cell. 

The majority of value in 
cells comes from Cobalt or 
Nickel.  Copper represents 
about half of the 
remainder.

(Source: can be reconstructed 
from appendix B)
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Table Sources: *USGS 2013 Resource Handbooks: stock and rate calculated with data from this document 

Material Availability 

(Mt, resource 

base)* 

Production 

(2012, kt)* 

Supply 

Constrained Stock 

(kWh) 

Production Constrained 

Rate (kWh/y) 

Cobalt 13 110 13 x 109  (LCO) 

28  x 109 (NMC) 

110 x 106  (LCO) 

260  x 106 (NMC) 

Nickel 150 2100 375 x 109   5 250  x 106 

Lithium 30 26 60 x 109   152 x 106 

Manganese 5200 16 000 5 777 x 109  (LMO) 

14 900  x 109  (NMC) 

13 900 x 106 (LMO) 

42 000  x 106 (NMC) 

Cobalt and Lithium are the most constrained materials. Nickel 
is important to recycle for environmental reasons.

Calculated by taking the 
USGS estimates for 
resource base and annual 
production, and comparing 
it to the material contents 
in the cells for NMC 
batteries which are 
estimated to be the most 
produced variant in 2025. 

Can be reconstructed from 
appendix B. Table links to 
USGS.

These estimates should not be taken as immutable; as demand and price rise, more production 
will occur and more resources will become available.
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iii.  Lithium batteries and scarce materials
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http://minerals.usgs.gov/minerals/pubs/
http://minerals.usgs.gov/minerals/pubs/


Other potentially constrained metals vary by chemistry

Cobalt and Lithium are the 
most interesting from a 
scarcity perspective.  Nickel 
is highly toxic in the 
environment.  Manganese 
is a lower order of worry in 
both scarcity and 
environmental terms.

Can be reconstructed from 
appendix B.
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iii.  Lithium batteries and scarce materials
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• 160 g Li / kWh as an all-chemistry 
average estimate for BEV batteries

• Possibly 250-400  for PHEV batteries 
(Gaines, ANL., GREET MODEL)

• No clear way to use less metal  
without less life or lower energy 
chemistry

(source: Kushnir & Sandén 2012, linked from graph)

Lithium content of batteries is mostly a function of voltage and 
cathode thickness.
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iii.  Lithium batteries and scarce materials

Introduction

http://publications.lib.chalmers.se/publication/144097-multi-level-energy-analysis-of-emerging-technologies-a-case-study-in-new-materials-for-lithium-ion-b
http://publications.lib.chalmers.se/publication/144097-multi-level-energy-analysis-of-emerging-technologies-a-case-study-in-new-materials-for-lithium-ion-b
https://greet.es.anl.gov/


Anticipated sales by chemistry, in tons

Nickel and Cobalt containing 
chemistries seem likely to 
remain dominant for at least 
another decade.

This has more to do with 
mobile devices than vehicles. 
LFP batteries are used in EVs 
and power tools and are 
anticipated to have the fastest 
growth rate. 

(graph contains link to latest 
source)

Virtually all projections indicate 
similar results: fast growth and 
a mix of technologies

Very low material value in batteries
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iv.  Trends and projections
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http://www.avem.fr/docs/pdf/AvicenneDiapoXining.pdf
http://www.avem.fr/docs/pdf/AvicenneDiapoXining.pdf


The EU has much more 
stringent laws than the US 
regarding battery recycling.  
However batteries can not be 
landfilled in either region, and 
advanced recycling companies 
and voluntary recycling 
networks exist in North 
America .

In addition, all OECD nations 
have regulations considering 
the transport of batteries by 
road, rail, or sea transport. 

EU Battery Directive (2006/66) (Link)
- 45% batteries recovered by 2016
- 50% of mass recovered by recycling
- Energy recovery does not count

North America
- Patchwork of state level laws in US
- Mandatory recycling in BC,QUE,SAS in 

Canada

Common
- Hazardous waste cannot be landfilled
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v.  Legislation regarding lithium battery recycling
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http://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32006L0066
http://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32006L0066


i. Pyrolysis

ii. Hydrothermal recycling

iii. Direct physical recycling

iv. Process comparisons

This section describes the 
physical process and theoretical 
potential of each recycling 
process for cells.   Recycling for 
other components of a battery 
pack, such as electronics is 
excluded.  Such components have 
well defined recycling pathways 
(e.g. WEEE), and are easy to 
separate.

Recycling Processes

Introduction Status/Prospects Conclusions Ref/AppendicesProcesses



The process used by Umicore is a 
good illustration of pyrolysis 
approaches in general, both 
because Umicore is one of the 
largest battery recyclers at present, 
and because they have been 
transparent releasing process data 
(Tytgat 2011, Umicore 2013).  

Pyrolysis means melting and reducing the battery materials to 
obtain metals

Introduction Status/Prospects Conclusions Ref/Appendices

i.  Pyrolysis

Processes



Batteries are shredded and smelted 
in a furnace where limestone is 
added as a slag-forming agent. The 
furnace has three heating zones. 
First, by slowly heating the battery 
waste, the risk of explosion reduces 
and the electrolyte evaporates. In the 
next zone with a higher temperature, 
all the plastic and solvents in the 
battery are burned. 

Source: Adapted from 
Umicore/Tytgat (2013).

Original linked from 
diagram.

The energy released greatly lowers the input energy needed to smelt 
the battery. Umicore considers the plastic mass recycled as a reducing 
agent in the process (Dunn and Gaines 2012). However, the European 
Union (EU) battery directive explicitly states that energy recovery is not 
considered recycling (EU 2006). If the EU rules that the plastic is 
indeed a reducing agent rather than merely burned for energy, it will 
place the pyrolysis method closer to achieving the 50% mass recovery 
target for batteries (European Union, 2006).
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i.  Pyrolysis

Processes

http://ec.europa.eu/environment/waste/batteries/pdf/umicore_pres_18072011.pdf
http://ec.europa.eu/environment/waste/batteries/pdf/umicore_pres_18072011.pdf


Advantages 
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Disadvantages 

Pyrolysis is highly effective at recovering 
Nickel, Cobalt, and Copper in a 
concentrated and relatively clean alloy, with 
high efficiency.  Other toxic solvents are 
burned, providing much of the process 
energy and removing their toxicity.

Pyrolysis processes can take more than one 
battery chemistry at the same time, leading 
to economies of scale, and simplified 
logistics.

Pyrolysis already exists at industrial scale, 
and is a mature metallurgical technique. It 
is an ‘off-the-shelf’, proven option.

The inherent chemistry of the smelter traps 
other elements in the slag.  Lithium and 
Manganese are the most relevant of these. 
The slag itself is a fairly complex material 
and recovering lithium from the slag is only 
a theoretical possibility, and even then, 
would be expensive and inefficient.  

Many other chemicals in the battery are 
lost. From a lifecycle perspective, this is 
sub-optimal, and for batteries without Ni or 
Co, the economics are not nearly as good, 
leaving an open question as to suitability 
for future batteries.  Because energy 
recovery does not count, the recovered 
mass is right on the boundary of the EU 
Battery Directive target (50%).

i.  Pyrolysis

Processes



Lost materials and pyrolysis

Introduction Status/Prospects Conclusions Ref/Appendices

There is an open question as to the potential to 
recover metals such as Lithium from pyrolysis 
slag.  At present, the slag is used as a concrete 
additive, where it does possess some beneficial 
properties, but will result in the permanent 
scattering of its constituent materials. 

If the feed for pyrolysis is pure lithium batteries 
(as opposed to mixed with NiMH, other types of 
batteries), then the slag could theoretically 
contain up to 1% lithium by mass.  Such a 
concentration is roughly equivalent to marginal 
Spudomene mines for lithium, indicating that it 
may not be impossible to recover it. Such a 
process is unlikely to be viable with low volumes 
of slag however, and compared to simply selling 
the slag as additive would likely be very 
unattractive to a company considering it. 

i.  Pyrolysis

Processes

Li,  Mn,  Al, Si, etc. 



The defining aspect of 
hydrothermal approaches is 
ultimately the use of acid reactions 
to precipitate the salts as metals

Hydrothermal processes use in-solution chemistry to isolate 
component chemical compounds from battery waste

Introduction Status/Prospects Conclusions Ref/Appendices

ii.  Hydrothermal Recycling

Processes



For hydrothermal processes, batteries are typically 
mechanically separated and the cathode materials are 
crushed and added to some form of solvent, such as NMP, 
which dissolves the binder from the cathode, and leaves 
the aluminium foil to be recovered with the metal oxide 
suspended in solution. 

The NMP/water liquid is then filtered and the NMP can be 
recovered and reused at approximately 80% efficiency if 
the process is done at large enough scale to afford a 
recovery unit.

After isolating and drying the cathode powder residue, the 
metals in it can be leached out with an acid, often a strong 
one such as Nitric acid, but this can also be done with 
more ‘eco-friendly’ acids such as citric acid (Li, Dunn et al 
2013).  The metal can then be precipitated as a pure salt.

Introduction Status/Prospects Conclusions Ref/Appendices

Source: Adapted from Li, 
Dunn et al (2013)

Original linked from 
diagram.

ii.  Hydrothermal Recycling

Processes

https://www.researchgate.net/publication/257225281_Recovery_of_metals_from_spent_lithium-ion_batteries_with_organic_acids_as_leaching_reagents_and_environmental_assessment
https://www.researchgate.net/publication/257225281_Recovery_of_metals_from_spent_lithium-ion_batteries_with_organic_acids_as_leaching_reagents_and_environmental_assessment


Introduction Status/Prospects Conclusions Ref/Appendices

Advantages Disadvantages 

Hydrothermal methods of recycling are 
actually a collection of tailorable processes 
that resemble mining extraction.  Through 
a combination of physical and chemical 
means, many of the constituents of a cell 
can be recovered in a form that facilitates 
easy recycling or simplified procedures to 
reuse as battery material. 

Virtually any material can be recovered at 
high efficiency.

The chemistry and procedures are fairly 
mature due to their heritage in the mining 
industry, and could scale up given financial 
incentive.

Many of the possible environmental and 
revenue gains from recovering more 
material are offset by large scale use of hot 
water, acids, and solvents, all of which are 
fairly energy intensive and bring the 
potential for issues with runoff without 
tight control of the process. 

The source material needs to be known 
(e.g. battery chemistry) in order to tailor an 
efficient process.  This implies that 
batteries must be sorted by chemistry.

The potential revenue and costs that make 
hydrothermal approaches promising are 
highly dependent on scale.  Scaling is thus a 
chicken and egg problem.  

ii.  Hydrothermal Recycling

Processes



iii.  Direct Physical Recycling

Direct recycling of battery materials 
means removing and refurbishing 
them, allowing reuse without 
changing their chemical form. Only 
demonstrated recently, has the 
potential to be environmentally 
and economically superior.  

Introduction Status/Prospects Conclusions Ref/Appendices

iii.  Direct Physical Recycling

Processes



In the envisioned direct physical recycling process, the cells 
are separated from each other, breached (punctured), 
passivated and have the material separated.    The 
passivation is required to make chemistries such as LCO-G 
safe from fire risk, and can be carried out through 
methods such as a controlled injection of oxidizer in 
solution. 

Separation of the cathode material can occur physically or 
through transport with a solvent such as supercritical CO2.

The recovered cathode material can then be re-baked or 
re-sintered with a lithium compound to restore the original 
properties.  100% recovery of original performance has 
been demonstrated as of 2015 (Sloop, 2015 : Link). 

Source: US PATENT 8,846,225 
(2015).Original linked from diagram.
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iii.  Direct Physical Recycling

Processes

http://www.google.com/patents/US8846225
http://www.google.com/patents/US8846225
http://energy.gov/sites/prod/files/2015/06/f23/es205_sloop_2015.pdf
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Advantages Disadvantages 

Direct physical recycling potentially 
recovers battery materials in a reusable 
form: this means higher revenues and 
lower environmental impacts. 

The worst case scenario is more or less 
equivalent to hydrothermal recycling. 

The process is not as dependent on scale as 
pyrolysis or hydrothermal approaches, 
which could have radical implications for 
end of life logistics; recycling may be 
possible in large cities, rather than having a 
few large sites for the whole EU.

Direct physical recycling has only recently 
been demonstrated at a workable scale and 
quality.

The process depends on knowing the 
battery composition, meaning that battery 
chemistry must be known and cells sorted 
appropriately. 

The ‘manual’ approach to breaching the 
cell and extracting its contents may be 
difficult to scale.

The process itself has no theoretical 
downsides, providing that the previous 
points can be addressed.

iii.  Direct Physical Recycling

Processes



There are some steps that recycling processes have in common

Discharging – modules and battery packs can carry dangerous voltages, and the 
potential for adverse chemical reactions is higher with charged 
batteries

Passivation – not needed for pyrolysis, passivation is removing the chemical 
activity of the battery contents. Can be done in many ways, e.g. 
cryogenic freezing or controlled oxidation 

Disassembly – once passivated and opened, the contents can be removed 
through disassembling the cell, or through shredding it
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iv.  Process Comparisons

Processes



In theory, skipping more life cycle stages should result in 
superior environmental performance

Cathode 
Material 

Production

Metal Salt 
Production

Primary Metal 
Production

Battery 
Assembly

Direct Recycling

Hydrothermal

Pyrolysis 
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iv.  Process Comparisons

Processes



All recycling methods will result in considerable environmental 
improvement of battery lifecycles

The results for hydrothermal 
recycling indicate a superior 
recovery of materials, 
tempered by the use of large 
quantities of hot water and 
solvents and acids that are 
energy intensive to produce.

Direct recycling is 
anticipated to be a fairly 
major improvement over 
existing methods. 

Source: Realize modelling, 
previous industrial project.  
Can be compared with the 
GREET model
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iv.  Process Comparisons

Processes

https://greet.es.anl.gov/


Ni, Co fate Li fate Other notes

Recoverable from 
molten alloy, 90%+

Lost in slag
Max recovery 
approx. 50-60%
(expensive)

Cu in alloy,
All else lost to slag or burned 
for energy

Recoverable as salts, 
95%+

Can be precipitated,
90%+ recovery

Most things recoverable to 
80%+

Recoverable as battery 
materials

Partially reused, 
partially recovered

Other materials recoverable 
as fractions, similar to hydro

‘Pyro-’

‘Hydro-’  

‘Direct ’

Comparison of material fates for the most constrained metals
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iv.  Process Comparisons

Processes



Technology status and prospects

i. Current actors and facilities

ii. Technological status and assessment 
of prospects

This section describes the current 
development status of recycling 
technology, including actors 
involved in the system, and an 
analysis of the economic 
prospects of recycling lithium ion 
batteries.

Introduction Processes Conclusions Ref/AppendicesStatus/Prospects



Company Location Recycling process Materials recovered

Accurec Germany Pyrolysis and hydrometallurgy.
Aluminium, copper, iron scrap, iron/magnesium, 
nickel/cobalt, future: LiCO3.

Recupyl France
Mechanical separation, hydrometallurgical 
leaching and refining.

Aluminium, cobalt, stainless steel, lithium 
products.

SNAM France Crushing, pyrolysis, distillation, pyro-metallurgy. Ca, ferro nickel alloys, ferro cobalt alloys

Umicore Belgium (Sweden)
Pyrometallurgical smelting followed by 
hydrometallurgical refining.

Cobalt, nickel

Batrec Switzerland Pyrolysis, pyrometallurgy. Ferromanganese, Zn, mercury.

G & P Batteries UK Pyrometallurgical or hydrometallurgical.

Pilagest Spain Mechanical separation, chemical treatment.
Plastic, paper, ferro compounds, ferric 
components, metals, zinc sulphate, manganese 
salts/dioxide/graphite.

Eurodieuze France Hydrometallurgy Nickel, cadmium, steel

GRS Batterien Germany Pyrometallurgy Cobalt, nickel, copper

Companies with some capacity to recycle LIBs in Europe, 2015 
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i.  Current Actors and Facilities

Status/Prospects



Pyro approaches exist at industrial 
scale – enough capacity for 2020 
already in EU. 

Hydro approaches at pilot scale, some 
companies developing in EU and 
industrially in N.A. (e.g. Toxco)

Direct approach proven at proof of 
concept, developed by two companies 
in N.A.  (OnTo, Retreiv)

Source: previous table, company websites

Location of facilities in EU
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i.  Current Actors and Facilities

Status/Prospects
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Technology status, end of 2015

At the end of 2015, the only recycling technology available on an industrial scale in 
Europe is pyrolysis.  Hydrometallurgical facilities in Europe are still at a prototype 
stage, and while larger hydrometallurgy plants operate in North America (e.g. 
Toxco), they are not yet at a level where the capacity exists to handle more than a 
small fraction of future battery flows.

In contrast, direct physical recycling is being developed by two North American 
companies, but is still at the laboratory stage.  2015 saw successful rebuilding of a 
‘like-new’ battery from recycled materials. 

As batteries may not be landfilled, this means that existing recyclers can (and do) 
charge a premium gate fee to recycle used batteries.  

This fee is anecdotally roughly 4€/kg ($5 USD/kg)

ii.  Status and assessment of prospects

Status/Prospects
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Estimated gross process margins (€/kg)

ii.  Status and assessment of prospects
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Pyrolysis Hydrometallurgical, Citric Acid

Source: models from process section, using current pricing for all inputs and outputs.  Reflects an optimistic vision of large scale 
purchases, and all outputs being saleable at market prices. Capital, Labour, IP, Rent, Disassembly not included.

Hydrometallurgy has better economic prospects at scale, but both processes may struggle with LFP 
batteries.  Current gate fees are by far a larger source of revenue than the materials.

Status/Prospects



“profits from selling recovered metals are not major driver of [our] recycling 

operation”

Maarten Quix, Head of Battery Recycling, Umicore 
as quoted in: Nature 526, (29 October 2015) doi:10.1038/526S100a (linked)

• Existing industrial scale recyclers understand that the main factor for the 
decision to recycle is currently legislation.

• Gate fees are integral to their business model. 

• Developers of direct recycling (and new hydrothermal) approaches also 
understand this.
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ii.  Status and assessment of prospects

Status/Prospects

http://www.nature.com/nature/journal/v526/n7575_supp/full/526S100a.html
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A shift to direct physical recycling could provide a large 
revenue boost for Ni/Co materials, and represents a radical 
improvement for other cathode materials

ii.  Status and assessment of prospects

Status/Prospects

Source: Adapted from Gaines et al, 2013 (linked)

http://www.sciencedirect.com/science/article/pii/S2214993714000037
http://www.sciencedirect.com/science/article/pii/S2214993714000037
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Can hydrothermal methods or direct physical recycling scale 
to compete with existing pyrolysis facilities?

ii.  Status and assessment of prospects

Status/Prospects

This is the 64 000€ question.  Gate fees at present represent a market inefficiency, 
but are also a massive incentive for new entrants to the market as they make all 
processes very profitable. It is easy to note that they are often referenced in pitch 
decks for new technologies and companies.  As new facilities come on line, gate 
fees should drop and will eventually result in selection pressure. 



Conclusions and Discussion

i. The need for recycling

ii. Prospects for recycling and outlook for 
recovery of scarce metals

iii. Implications for battery producers/users

Introduction Processes Status/Prospects Ref/AppendicesConclusions
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1. Comply with legislation (most important for producers, owners)

2. Economic Reasons (most important for recyclers)

3. Minimize environmental harm potential from battery lifecycles

4. Circular flows of strategic metals

5. Make electromobility possible!

i.  The need for recycling

Conclusions

Many reasons to recycle batteries are cited

Direct motivations for actors:

Societal motivations:
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i.  The need for recycling

Conclusions

Are circular flows of battery materials necessary?

It is fairly certain that large scale adoption of lithium batteries will stress cobalt 
supplies (Gaines et al 2013), but not all batteries need cobalt.  Lithium is a longer 
term concern (Kushnir and Sandén 2013), and some argue that it may not be a 
concern at all (Yaksic and Tilton 2009, Gaines et al. 2014).  Given that available 
pyrolysis recycling can recover cobalt, is there are pressing need for change?

Access to materials may be an important policy driver.
The EU is 100% import dependent on all potentially scarce battery materials, a fact 
which is recognized in the initiatives for a circular economy (EU COM 2011/21), and 
commission directives on strategic materials.  Even without an immediate need to 
recycle for scarcity reasons, the very concentrated supply chains in cobalt and 
lithium may represent a risk for European industry.  This risk is considered 
sufficient at the EU level to justify research and development of recycling capacity 
(EU COM 2014).
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i.  The need for recycling

Conclusions

Current gate fees will hinder reaching EV competitiveness 
targets

Various long run targets for battery prices have been proposed in order to ensure 
the cost competitiveness of electrified transport.  These range from $150-200/kWh 
for the Advanced Battery Consortium to <$250/kWh from the International Energy 
Agency.   

In either case, $5/kg translates to some $35-50/kWh, which could push out 
achieving the cost targets by a decade, or prevent it entirely.  On a purely life cycle 
cost basis, higher competitiveness in the recycling market will be a critical part of 
achieving cost effective and sustainable electrified transport. 

http://www.uscar.org/guest/teams/12/U-S-Advanced-Battery-Consortium-LLC


Gate fees are a potent incentive for new firms to enter market

Gate fees are much higher than the potential revenue from materials, and all of 
the processes for recycling should be able to operate at a profit (very slim for LFP 
type chemistries).  Competition for gate fees should be the result, hopefully 
reducing them significantly in the future.

i. Conclusions 1

Introduction Processes Status/Prospects Ref/Appendices

Legislation coupled with lack of choice produces gate fees

Although end of life batteries are still a fairly small waste flow in mass terms, there 
are not very many options for recycling them.  The choice is essentially to pay 
whatever it takes to recycle the battery or ‘remove it from the system’ via export or 
even simple warehousing. Gate fees will likely be a fact of life for the near and 
medium term.

Conclusions

ii.  Prospects for recycling



i. Conclusions 1

Introduction Processes Status/Prospects Ref/Appendices

There will be no issue with recycling cobalt or nickel, but 
recycling lithium will require new processes

Recovery of lithium from pyrolysis slag is not likely to be cost effective, and thus 
circular flows of lithium will require alternative recycling processes.  Both 
hydrothermal and direct physical recycling can achieve this goal. 

The good news is that innovation is occurring, and that new processes can be cost 
effective at scale, indicating every technical possibility for circular flows of battery 
materials in the future.

Conclusions

ii.  Prospects for recycling



Batteries all need to be disassembled.   Bolts are preferred over glue, and electronic 
modules and copper connectors should be simple to separate.

Direct and Hydrothermal approaches require chemistry-specific handling.  This means 
that capability to sort batteries by content is a prerequisite for future recycling.

Direct physical recycling may require further adaptations, such as the ability to 
unroll/unpack cell interior, to enable efficient removal of materials for processing.

Introduction Processes Status/Prospects Ref/AppendicesConclusions

iii.  Implications for battery producers / users

Design for recycling is simple for batteries, but should be 
considered now.
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ii. Appendix B – Material breakdown and value of cells by chemistry
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