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: FUSION 'MICROEXPLOSIONS , EXOTIC FUSION FUELS, DIRECT CONVERSION : 

ADVANCED TECHNOLOGY OPTIONS FOR CTR 

Thomas weavert, John Nuckol 1 s and Lowel 1 Wood 

U n i v e r s i t y  o f  Cal i for'ni a. Lawrence L i  vermore Laboratory 

Livermore, CA 

SUMMARY 

I n  the  past  few years, several new techno log ica l  opt ions r e l a t e d  t o  

con t ro l  l e d  fus ion  have' been developed t h a t  promise t o  dramat ical  ly improve 

the  long term prospects f o r  t h e  product ion  o f  inexpensive e l e c t r i c a l  energy 

w i t h  minimal environmental impact. Thi's 'paper very b r i e f l y  describes th ree 

o f  these opt ions:  l a s e r - i  n i  t i a t e d  f u s i o n  microexplosions, e x o t i c  f u e l  usage, 

and new forms o f  conversion o f  f u s i o n  energy d i r e c t l y  t o  e l e c t r i c i t y .  While 

- these technologies do n o t  depend on each o ther  f o r  t h e i r  use fu l  r e a l i z a t i o n ,  

they r a t h e r  na tu ra l  l y  combi ne t o  form 'an extremely a t t r a c t i v e  f u s i o n  reac to r  

sys tem . 
LASER FUSION 

The basic concept of the  l a s e r - i n i  t i a t e d .  f u s i o n  microexplosion, i n  which 

an intense,  c a r e f u l l y  time-shaped l a s e r  pulse. serves t o  compress and i g n i t e  a' 

pel  l e t  o f  f us ion  fue l ,  i s  depicted i n  F igure  1 .  The sequence o f  events presented 

there  i s  described i n  more d e t a i l  i n  Appendix A, and i s  based up?n extremely 
\ 

soph is t ica ted computer mode l l ing  c a l c u l a t i o n s .  To date, such computer codes have 

. ' beer1 successful  i n  accura te ly  mode l l ing  a v a r i e t y  of plasma phenomena.and t h e i r  

w.V pred ic t i ons  are  thus regarded with a reasonably h igh  degree o f  conf idence. The 

. 
t y p i c a l  microexplos ion described here requ i res  a 1 megajoule, lo- ' *  second d u r a t i  bn 

*Research , performed under the  auspices o f  t h e  Uni ted States Atomic Energy Comni ss ion.  

+Also Fannie and' John Hertz Foundation Fellow, Physics Dept., l l n i v e r s l  t y  o f  C d l  i.F,. 3 

Berkel ey . 
. .. 



l a s e r  pulse, and produces 25 k i lowat t -hours  o f  thermal energy, w i t h  t h e  expendi ture 

.. o f  1-3 kwh t o  e x c i t e  the  ' laser .  F igure 2 shows a conceptual model o f  an e a r l y -  

( ,  type DT-burning lase r - fus ion  ,power p l a n t .  Such a p l a n t  would accomodate 10-100 

* " t y p i c a l  " n ~ i  c roexp los i  ons a second and would thus produce 1000-10,000 time- 

averaged megawatts of thermal power. As i t  stands, the  c a p i t a l  cos t  o f  t h i s  

r e a c t o r  i s  be1 ieved t o  be comparable t o  conventional power p lan ts ,  w i t h  opera t ing  

costs s i g n i f i c a n t l y  less.  (See Table 6. ) Fur ther  poss ib le  improvements 

w i  11 be described be1 ow. 

The present  s ta tus  o f  l a s e r  f u s i o n  research e f f o r t s  i s  sketched i n  Table 1. 

The major emphasis a t  present i s  on the  development of t h e  requ i red  'high power, 

sho r t  pulse lasers ,  w i t h  a t o t a l  US e f f o r t  o f  'L $33 m i l l i on / , y r .  The "moderate"- 

power lasers  needed f o r  dec i s i ve  experimental ' v e r i f i c a t i o n  o f  t he  microexplos ion 

theory are expected t o  be a v a i l a b l e  i n  2-3 years. If t he  outcome o f  such 

experiments . . . i s  b a s i c a l l y  favorable,  then t h e  fundamental ly d i f f e r e n t  laser- induced , . 

. . 

microexplosion. approach t o  c o n t r o l l e d  fus ion w i l l  have d ramat i ca l l y  outpaced, 

the  development o f  t he  rnagneti c conf  i nement approaches. 

F igure  3' shows an i d e a l i z e d  advanced f u s i o n  pOwer p lan t ,  and serves t o  
. . 

i n d i c a t e  i t s  p o t e n t i a l  c h a r a c t e r i s t i c s  and the,  technologies requ i red  f o r  

implementation. While a f u s i o n  microexplosion-based p l a n t  i s  depicted, t he  

concepts and technologies are  appl i c a b l e  t o  o the r '  c o n t r o l  l e d ,  f u s i o n  approaches. 

Only the  e x o t i c  f u e l s  and d i r e c t  conver'sion techniques w i l l  be discussed i n  

d e t a i  1 here, b u t  the  others a l s o  deserve' ser ious a t t e n t i o n .  

EXOTIC FUSION FUELS 

The necessary and des i rab le  c h a r a c t e r i s t i c s  o f  f u s i o n  fuels a re  d e t a i l e d  

' i n  Table 2, w h i l e  Table 3 l i s t s  the  most promising e x o t i c  f u e l  candidates. The 

11 apparent ly  super io r  candidate i s  t h e  p + Eli'' +3 I ie4  r e a c t i o n  (denoted by pB ), 

whose c h a r a c t e r i s t i c s  a re  g iven i n  Table 4 and Figure 4. The most s a l i e n t  



features are  t h e  exceedingly c lean burn ("ashes" 2 0.1% neutrons o r  r a d i o a c t i v e  

p a r t i c l e s ) ,  combined w i t h . a  reasonably h i g h  burn r a t e  and a f a i r l y  l a rge  

47, f r a c t i o n a l  energy output  i n  charged pa r t i c les . ,  Thus, problems i n v o l v i n g  neutron 
c 

w a l l  damage and a c t i v a t i o n ,  r a d i o a c t i v e  m a t e r i a l  hand1 i n g  and waste d isposal  , 
; 

r a d i a t i o n  shieldi 'ng, and e f f i c i e n t  neutron energy conversion are  e s s e n t i a l l y  

11 . . 

e l im inated i n  advanced 'CTR reac tors  fue led  by pB . . . 

DIRECT CONVERSION 

The' requ i red  scope o f  d i r e c t  f u s i o n - e l e c t r i c  conversion devices along 

w i t h  a 1 i s t i n g  o f  the  more promising .approaches i s  g ivbn i n  Table 5. F igure 5 

dep ic ts  the  AC MHD method of e x t r a c t i n g  e l e c t r i c a l  energy from plasma expansion. 

F igure 6 sketches poss ib le  means of d i r e c t  conversion t o  e l e c t r i c i t y  o f  x-ray' 

and. neutron energy, . v i a  s c a t t e r i n g  o f  charged - p a r t i c l e s .  Figures 7 and '8 d e p i c t  . 

reac tors  us ing these conversion devices. Methods o f  x-ray and neutron d i r e c t  

conversion 'have t o  date received v i r t u a l l y  no experimental a t t e n t i o n ,  desp i te  

t h e i r '  obvious. importance t o  the  e f f i c i e n c y ,  o f  f u s i o n  systems, and indeed the  . . 

proposals presented here a re  apparent ly  t h e  f i r s t  out1 ines  o f  poss ib le  approaches 

t o  the  problem. (It has apparent ly  been assumed h i t h e r t o  t h a t  neutrons and 
. , 

x-rays coul dn ' t be d i r e c t l y  converted t o  e l e c t r i c a l  energy because they were 

e l e c t r i c a l l y  uncharged. ) Much more work i n  these areas i s  c l e a r l y  - required.  
. . 

> I f  such d i r e c t  conversions systems can be constructed, r\, 60% o v e r a l l  conversion 

e f f i c i e n c i e s  seem p l a u s i b l e  f o r  advanced f u s i o n  rekc to rs .  F igure 9 shows the  

fus ion energy "p ig "  p a r t i t i o n i n g - - t y p i c a l  conversion processes f o r  e a r l y  DT- 

and advanced p ~ l  ' -burning CTR power systems. V i r t u a l  l y  ill energy fo rms appear 

t o  be d i r e c t l y  conver t ib le ,  except f o r  a s o f t  x- ray "squeal". 

Table 6 summarizes var ious est imates of . the c a p i t a l  c o s t  per i n s t a l  l e d  k i l o w a t t ,  
. . 

e l e c t r i c a l  conversion e f f i c i ency ,  and 'operat ing cos t  which have been repor ted  o r  



pro jec ted f o r  var ious conventional,  f i s s i o n ,  and fus ion power p lan ts .  

The technological,  o u t l i n e s  o f  an "near ly  i d e a l "  advanced fus ion  r e a c t o r  

system thus seem t o  be emerging a t  present.  I t  appears t h a t  a vigorous program 

o f  technological  development t o  f i l l  i n  these o u t l i n e s  i s  c a l l e d  f o r .  The 

r e a l i z a t i o n  o f  such an advanced power system and i t s  a t tendant  subs tan t ia l  

cos t  and environmental advantages would seem t o  b e ' a  h igh  p r i o r i t y  concern 

o f  forward- looki  ng power techno log is ts  . , . 



APPENDIX 

Capti on t o  Figure 1 : Typical Laser Fusion M i  croexplosion: 

a) Atmosphere formation 

I n i t i a l l y  weak laser  beams' symmetrical ly s ' t r i  ke a IL 1 mg frozen 

deuter ium-tr i  t ium pel l e t  from many d i rec t ions,  vaporizing .and i on i z i ng  

1% o f  i t s  sk i n  t o  form.an atmosphere around the p e l l e t .  This atmosphere 

enhances (through lower pel  l e t  r e f l e c t i v i t y )  and symmetrizes (by mu1 ti p l e  

scat ter ing-- the overcast, cloudy-sky e f f e c t )  the pel  1 e t ' s  absorption 

o f  the subsequently input ted laser  l i g h t .  

b )  Compression 

: Laser '1 i g h t  i n t e n s i t y  i s  increased and much more mater ia l  i s  heated 

up and v i o l e n t l y  blown o f f  the p e l l e t  "surface". The escaping mater ia l  

.'expands r a d i a l  l y  outward, r e s u l t i n g  i n  an i nward-di rected react ion 

. , 
f o r c e  on the pel  l e t  (exact ly  analogous t o  a number o f  rockets ; a1 1 ' 

pointed d i r e c t l y  toward the same po in t ) .  The time v a r i a t i o n  o f  the laser  
. . 

beams' i n t e n s i t y  i s  c a r e f u l l y  adjusted so t ha t  t h i s  reac t ion  force 

compresses the p e l l e t  i n  a bare ly  subsonic fashion ( t o  avoid creat ing 

sho,ck waves t ha t  would heat the p e l l e t  and thus hinder i t s  f u r t h e r  

compression). 

c )  I g n i t i o n  

A t  t h i s '  stage 70% o f  the p e l l e t  has been ablated away, and the rema.ining 

core compressed t o  10,000 times i t s  .o r ig ina l  dens i t y . .  A f i n a l ,  abrupt 

pulse o f  laser  l i g h t  then s t r i k e s  the p e l l e t ,  r e s u l t i n g  i n  a strong 

compressional wave t ha t  steepens i n t o  a shock wave j u s t  before i t  

reaches the center o f  the p e l l e t .  This shock wave heats the p e l l e t ' s  

cen t ra l  region t o  100 m i l l i o n  O C ,  i n i t i a t i n g  thermonuclear react ions 

there t ha t  qu ick ly  spread throughout the r e s t  o f  the p e l l e t .  



d)  Thermonuclear Burn 

The l a s e r  l i g h t .  has been turned o f f ,  and t h e  pel  l e t  cont inues t o  

burn un't i  1  i t s  increas ing i n t e r n a l  pressure 'blows i t  apar't. The 

, r a t e  o f  burn i s  p ropor t i ona l  t o  t h e  square o f  t h e  pel 1 e t ' s  dens i t y  

and the  t ime the  p e l l e t  s tays together  i s  approximately equal t o  i t s  

rad ius  d i v ided  b y . t h e  sound speed . in  the  ho t  plasma. Since the  

p e l l e t  was so extremely compressed before  i g n i t i o n ,  i t s  burn r a t e  

i s  so l a r g e  t h a t  ex terna l  containment (i .e. v i a  magnetic f i e l d s )  t o  

pro long i t s  burn t ime i s  n o t  ,necessary t o  achieve a re lease o f  

fusi,on energy very  l a r g e  compar'ed t o  the  i n p u t t e d  energy. 

e).' . Energy Conversion 

T.he plasma remnant of.  t h e  p e l l e t  then expands, perhaps compressing 

a magnetic f i ] e l d  i n  t h e  process t o  d i r e c t l y  conver t  i t s  energy i n t o  

, 
e l e c t . r i c i  ty. (For DT, however, z. 75% o f  t h e  f u s i o n  energy i s  car r ied '  

away as h igh  energy neutrons, which escape from the  plasma as i t  

burns. Ano the r  5% comes o u t  as x-rays.) 
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TYPICAL LASER FUSION MICROEXPLOSION l i l ~  

LASNEX Computer Code Calculation: 1 Megajoule, DT pellet 

-(a) Atmosphere Formation (b) Compression 

1 mg DT pellet 

laser pulseto, 
produce the 
atmosphere in lo-a sec] 

0.01 mg [109 w for 
atmosphere to ~ c 1  Blown-off material 
enhance absorption 
of laser light 

acts like a rocket . . 

to subsonically 
compress the 
pellet 



TYPICAL LASER FUSION MICROEXPLOSION (Con't) GI 

(c) Ignition 

70% of pellet 
has been 
ablated away. 
Remainder 
compressed 
to 10,000 X 
its original 
density 

(dl Thermonuclear Burn 

t '  . .  

s ' i p  . . .  

:::'a;* 
laser light 
[3 x lo15 

. ... watt for 

Final laser. 
pulse shock- 
compresses 
pellet center 
to thermonuclear 
ignition temperature 
(100 million "C) 

. s '9 
0- # + ~ a n r  off 

d 4 ..o 
R 99   urn rate pro- 
o +a portional to 

(density)* '. 

I 
Thermonuclear Burn time 

burn spreads proportional 

from center to 

throughout pellet radius 

pellet sound speed 



TYPICAL LASER FUSION MICROEXPLOSION (Cont'd) L 3 '  

(el Energy Conversion 

Thermal or direct neutron 

eld 

Expanding plasma Energy output 
compresses mag- 75% neutrons 
netic for direct 20% expanding plasma 
conversion of 5% radiation 
plasma energy 
to electricity 

Cycle Specifications: 

Total laser energy: 
1 megajoule (114 kwh) 

Total electrical energy input: 
3-10 megajoule (1-3 kwh) 

Total thermonuclear energy output: 
100 megajoule (25 kwh) 

Total electrical energy output: 
35-70 megajoule (9-18 kwh) 

Repeated 10- 100 times/Gc 
for a 1-10 million kilowatt 

' (thermal) power plant - 



CONCEPTOF LASER FUSION ELECTRICAL POWER PLANT WITH DIRECT CONVERSION a 

Superconducting / High precision 
level conmller 

High power laser Front-surface Neutron shield walls 
pra-amplifier 

. .. L -- ---- 1 ---- ---111:-.. Neutron shielding 

Primary vacuum wall 

To high temperature - 
heat sink (power plant, 
industrial process, 
atmosphere) 

Liquid metal 

material 

heat pipe 

"g , Electrostatic dmpla steering 

Thermonuclear fuel 
droplet, free-falling 
into shot chamber wnter 

vacuum system L from drop source through 

Shot chamber 
/ 150 cm steering syram, irradiated 

from several sides by 
wall high power lasers 



LASER FUSION PROGRAM . . U 

Major efforts in CbS (Livermore, Los Alamos, U. Rochester, KMS), France, Germany, Japan and 
USSR 

$30 million annual funding (US); comparable level of effort abroad 
-- $3 million (known) annual private funding 
Approx. yearly doubling of effort since 1969 in US 

Present AEC Program: . . 

~evelo~ment of high power, short pulsed lasers (- 80% effort) 
t labor ate computer modeling of laser fusion microexplosion and related theoretical 
studies (- 10% effort) 
Laser-plasma interaction experiments (- 10% effort) 

Present Status: 
Laser Development 

1 kilojoule (1/4000 kwh) laser pulses are stateof-theart 
-- CI.1 kilojoule pulses of the required time duration sec) have been 
obtained 

1 kilojoule, sec pulses needed for "scientific breakeven" DT fusion expri- 
ments projected in 1-2 years (laser light energy = fusion energy produced) 

0.1 - 3 megajoule pulse, moderate efficiency (- lo%), high rep rate (10-100 per 
second) lasers for power plant applications projected in 5-10 years 



LASER FUSION PROGRAM. continued I!! 

Present Status Cont'd 
Theoretical/Calculational Studies 

Use of very sophisticated computer simulation codes 
Extensively checked against laser-matter interagion experiments, other 

verified computer codes, and analytically solved problems 
Exploitation of world's most powerful computers 

"Energetic breakeven" predicted for < lo3 joules of optimally used 
laser light fusion 

"Electrical breakeven" calculated for 2 lo5 joules of pulsed-shaped 
laser energy J 

"Electrical breakeven" computed a t  lo3 - lo4 joules of laser energy for 10% - 
1% efficient laser 

Hybrid system-fission blanket around fusion combustion chamber 
Burn naturalldepleted uranium or thorium to completion-no plutonium 

cycling 
Intermediate technological stage? 1 

Feature common to all DT-burning CTR systems 



IDEALIZED ADVANCED FUSION POWER PLANT: W 
Emphasis on a low capital cost a negligible fuel cost- * minimal environmental impact 

Low capital cost direct electrical conversion 
. . 

mechanism (> 60% efficient) and 

Non-ohdtrusive waste 
heat disposal or use 

+ Fairly cheap means of triggering 
Minimal local environmental or sustaining/confining fusion reaction 
impact (i.e., negligible chance electricity production ratio 2 10) 

7-1 of radiation leaks, nuclear in-plant electrical power consumption 
4 

2 explosions; minirnal heat l a  , 7 
3) 
m 

pollution and emissions) 

w 1 ,  2 ,  3 ,  4 ,  6 

Minimal shielding 
requirements 

2 , 1  Ultradurable walls that resist 
neutron activation and 
disintegration 4 

or 
essentially no neutron 
production 2 

Virtually none of the above characteristics can 
be realized with present1.y proposed fission 

Technology 

1 Controlled fusion 
l a  Laser fusion; advanced magnetic 

confinement systems 
2  Exotic fuels (e.g., p ~ l  

3 Plasma/neutron/x-ray direct 
conversion 

4 Refractory materials and isotope 
separation 

5 Pulse -* 60 Hz transformers 
6 High temperature radiators; heat 

transport systems 
7 Superconductor technology 



DESIRED EXOTIC CTR FUEL CHARACTERISTICS I!!! 
a 1) Reactions involving virtually no neutrons or radioactive elements. 
a 2) Fuel reactants cheaply and inexhaustably available. 
3) Principal energy output incharged particles to  . .  allow . efficient direct conversion. 

a 4)  on-prohibitive n7 requirements: 

E~herrnonuclear X Conversion Efficiency ' E~xte rna l  Heating 

generally requiring: 

E~harmonuclear > EBrems + Bother [Fuel Ignition Condition] 

Losses 

5) Energy generation possible under technically accessible conditions. 



. . 

PROPOSED EXOTIC FUEL CANDIDATES . . 

8 p +B1 + 3FIe4 + 8.7 MeV (WZW): Essentially meets al l  above conditions. . . 

r p + Li6 + He3 + He4 + 4.0 MeV (~ost)': Meets 1-3, but apparently not 4 and 5 (under quasi- 
thermal conditions). 

p +  Be9*a+ Lie+ 2.1 MeV (McNally) 

.I . LD +' ~ i ? ~  + 0.6 MeV 
B . . ~ D + D + . D + T  . . 
E. Meets 2 and 3, but not 1 
TI Also not 4 and 5 under quasi-thermal 
w conditions 

8 D + Li6 + He4 + He4 + 22.3 MeV Tritium 
L p  + Li7 + 5.0 MeV { Breeding 
LT + Li5 + 0.6 M ~ V  Reaction 

L D + i  

8 Fusion Chains (Jetter, Post; McNally): Potentially meet 2, 3,4; 1 and 5 in doubt. 



THERMONUCLEAR REACTION RATES 

FIGURE 4 



p~l l  FUEL SYSTEM CHARACTERISTICS 

p + B' l +  3ne4 + 8.68 MeV 
0 > 99.9% of reaction "ashes" are safe, non-radioactive helium nucleii 

* 
(OV) at Ti > 150 keV greater than all other CTR fuels; optimal nr requirements 

less than DD and comparable to D H ~ ~  (for Ti - 200 keV) 
opt 

. Ignition criteria* satisfied for 1.25 keV < Ti for PnA = 5 (typical of laser-fusion . 

system) and 150 <Ti < 600 keV for PnA = 20 (typical of mirror-machine 
.system). 

* 
Critically cross-sectiondependent. 

continued 



p~ l l  FUEL SYSTEM CHARACTERISTICS, continued LW 
Very small contaminating side branches 

. . . . 
Occurrence 
relative to Radioisotope inventory 

Q p + 0" + 3 ~ e ~  of 1000 MWt plant, 
Reaction MeV . . at 250 keV - Curies 

p + 0'' +C12 + 7 16.0 - 5 X . 200 (Steady state)" 97% 12 + 4 MeV 7's 
3% 16 MeV 7's 

p + ~ l l + n + ~ l l  -2.8 1.5 x lo-s 4 x 1 o5 (steady Thermal neutrons, 
state) tlI2(C 11 )=20min. 

a + ~ ~ ~ + n + ~ ~ ~  0.2 < < 3 X lo5 (Nb structural Non-thermal 
activity -.short-lived) .) generation 

a +  0" + p +  c14 0.8. 5 to-4. 5 lo3  (Annual (1 2 (En,Ep) < 4 MeV 
production) t 112(~ 14)=6~00yr. 

DT Fusion Reactor - - ,-  lo8 - lo9 (Steady state) 

Fission.reacl:or - - -. lo lo  (Steady state). 

0 15 from activation of water shielding (tlI2 = 2 min) 



p~ l l  FUEL SYSTEM CHARACTERISTICS, continued U 
Cheaper and more abundant than standard fuels: 

ppm by weight Estimated recovery or 

Reactant of Earth's crust production cost* 

511 8 10-20 dlg 
L i6 4 20 klg 

o 
0 -4 
3 x= 

D 0.5 20-30 kIg 
o m 
-I- 
E IT H ~ ~ / H ~  

negligible [projected 
n 

$1 o,ooolgt 
cD n 

production from D and ~ i ~ ]  $l/gm (?) (CTR economy) 
* . . available technology applied to large scale (CTR) production 

tpresent AEC official price 

Energy output in potentially directly convertible form: 
Charged particles (- 70% of E - 300 keV) 
Hard X-rays (-- 30% of Ephot 2 50-70 keV) 

* MHD conversion efficiency of 370% of charged particle energy 
* Compton generator efficiency of 10-30% of hard x-rays 



DIRECT FUSION-ELECTRIC ENERGY PRODUCTION pJ 

l mportance is  to reduce 
waste heat 
capital cost 

per unit of electrical output, by improving conversion efficiency. 

Fusion Energy Output Mode 

Expanding pkma 15% 20% . 70%/50% 
80% Neutrons 30% < 0.1% 

X-rays and other EM radiation 5% 50% 30%/50% 

Efficient direct conversion should utilize al l  there energy forms 
Most efforts to date have been aimed a t  plasma energy conversion 
Conversbn of x-ray andneutron energy by other than thermal means has 

received virtually no attention 



DIRECT FUSION-ELECTRIC ENERGY PRODUCTION,_continued 

Direct Plasma Energy Conversion Approaches 

ElectrosWic: Ions and electrons separated, and ionsare decelerated against 
ari electrostatic field (Post, et al) 

MHD duct: Plasma components replace conventional generator rotor 
AC MHD: Expanding plasma compresses a magnetic field through 

induction coils 

Direct Neutron Energy Conversion Approaches 

Neutrorric Compton generator 
Neutrons scatter protons, whose energy is  then extracted 
electrostatically 

. Direct X-ray Energy Conversion Approaches . . 

-8 Plasma absorption 
High Z material is injected around reacting plasma to absorb x-rays and 
convert their' energy to'plasma kinetic energy 

Compton generator 
X-rays scatter electrons, whose energy i s  then extracted electrostatically 



AC MHD CONVERSION FROM THERMONUCLEAR MICROEXPLOSIONS 
k3 

Features 
Basic feasibility demonstrated - 2 70% of KeV fireball 
internal energy converted to compressed magnetic field 
energy (Haught, et al, 1970) 
Low magnetic field intensities suitable - 2-4 Tesla for 
lo7 joule microexplosions 
500-5000 kv, 2 1 psec rise time pulses available for direct 

Faraday induction transmission line excitation, or for transformation 
-- 

DC field-generating - 

current system 

p a ($7 1 < 1011 watts 

18 (wN 2 10 watts) 



PHOTON- AND NEUTRON-DRIVEN COMPTON GENE 

Corn~ton Generator (Section) 

Electron spattering 
suppressor grids 

3 2 uphot ' 0.2-1.0 crn Igrn 

RATOR MECHANISMS 
G 

Neutronic Cornpton Generator (Section) 

High energy . Coolant channels- . 

proton-stopping 
"cathode" 
sheet 

k i i t r on  spattering $ ' I !\\ \\L 
suppressor grids - - 

proton-catching a 

foils 

- 5-8 crn21grn -++ K1O MeV p - * I  n 

Suitable hydrogenous 
fluid (e.g. low vapor 

. . 

capillarity-transported 
and surface tension- 
supported on cooled -I - - a - 
grid structure I 

K14 Me" 0-2 Cm /gm -4 
I 



DIRECT CONVERSION-OF MULTI-MEV NEUTRON ENERGY TO ELECTRICITY l!3 

Neutron-Proton 
TN Combustion Converter/"Electrostatic" 

Chamber Generator Bank, 

in high vacuum 



CONCEPTUAL DESIGN OF MHD CONVERTER-COMPTON GENERATOR MODULE (100 MWe) OF p ~ l  '-BURNING 
PULSED FUSION POWER PLANT u- 

"Minimum B" current loop 

Compton generator Low Z(e.g., Be, Cl  

rn 
W 
E)  
C 

Reentrant Faraday 
;P 
m 

pickup coil of MHD generator Features 

0 3 .  - 100 MWe output 

and 
6 7 - 85 MWe at 10 -10 volts 

MHD pick-up - 15 MWe a t  30-40 kV (isolation required) - 80 MWt high temperature 
"waste" heat - lo2 microexplosions per second, 

and structural of -2 megajoules each 
Applied magnetic field of 

dewar assembly - 1 Tala 

shielbcoolant in 
WIHD stator-pipe 



Electrostatic 
90+% 

70+% 

Neutronic Compton Generator 
50-80% 

High pr p ~ l  
(> 10 gm anf ) 



PROJECTED .REACTOR COSTS AND EFFICIENCIES 
. . .  
. . 

l;j 

Operating 
. . cost 

(total), 
Reactor Type .$ per kwe Efficiency, .mills/kwh . 

Conventional $150-250 3 0 4 %  . 7 
" Conventional. with MHD ' . $100-250 40-60% 4 

~uclear  (non-breede!) $200400 25'-35% 2-3 
Nuclear'F.ast Breeder $250-500 3040% 1.52.5 : 

. ~usi'on/~hermal 
3545% Conversion $200400 1.5-2.5 

~ d v a n c e i  DT  Fusion $1 50-300 50-70% 1-2 
Reactor w/Direct 

Conversion 
Advanced p ~ '  ' Fusion $1 00-200 50-70% . 1-2 

Reactor w/Direct 
Conversion 
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