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Executive Summary  

Study Purpose and Approach  

This study evaluates scenarios that achieve carbon neutrality in California by 2045. These scenarios are 

designed to align with California’s Executive Order B-55-18, which calls on the state to, “achieve carbon 

neutrality as soon as possible, and no later than 2045, and to achieve and maintain net negative emissions 

thereafter.” Specifically, the scenarios evaluated here achieve at least an 80% reduction in greenhouse 

gases from 1990 levels by 2045.  As stated in the Executive Order, this level of greenhouse gas reduction 

should be considered the minimum level of reductions needed in the state. More rapid carbon reductions 

that achieve carbon neutrality prior to 2045 may be considered in future analyses by the California Air 

Resources Board.  

Carbon neutrality means that all greenhouse gas (GHG) emissions emitted into the atmosphere are 

balanced in equal measure by GHGs that are removed from the atmosphere, either through carbon sinks 

or carbon capture and storage. This work specifically focuses on pathways to reduce carbon dioxide 

emissions from energy use in buildings, transportation, and industry, as well as from other non-

combustion and high global warming potential GHGs, including methane, nitrous oxide, and refrigerant 

gases: hydrofluorocarbons (HFCs), perfluorocarbons, sulfur hexafluoride, and nitrogen trifluoride. 

Natural and working lands will also play a pivotal role in addressing climate change. Natural and working 

lands sequester carbon dioxide in forests, soils, and oceans; these carbon sinks can be enhanced through 

land and ecosystem management practices. Likewise, natural and working lands can also represent a 

source of greenhouse gas emissions, due to land use changes such as deforestation and wildfires.  This 
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study does not evaluate the role of natural and working lands as either a net source or a net sink for 

greenhouse gas emissions in California. The California Air Resources Board and other agencies are 

continuing to research and collect data on the state’s historic and current carbon flux from natural and 

working lands to help inform a more complete view of the path to carbon neutrality in the state.  Future 

updates of California’s Climate Change Scoping Plan will include emissions targets for this sector, 

considering the role of natural and working lands as an emissions source and as a potential sink alongside 

the transportation, energy, and industrial sectors. 

The purpose of this study is to help to inform considerations for the California Air Resources Board initial 

development of the 2022 Scoping Plan update. More ambitious carbon reduction scenarios, that achieve 

carbon neutrality prior to 2045, may be considered as part of future analyses by the State. These scenarios 

build on Energy and Environmental Economics’ (E3’s) prior research into deep decarbonization strategies 

to achieve a 40% reduction in GHG emissions by 2030, and an 80% reduction by 2050 (“80x50”), relative 

to 1990 levels, as well as a literature review of deep decarbonization studies, including emerging research 

from European studies. This report has benefited from feedback from CARB staff and informal stakeholder 

comments, in response to a public workshop help by the CARB on August 19th, 2020. 

Key study questions include:  

 What are the available energy and non-combustion GHG reduction strategies to help achieve 

carbon neutrality by 2045?  

 How should California consider the tradeoffs between achieving additional energy-sector 

greenhouse gas reductions versus relying on carbon dioxide removal?   

 How do different mitigation strategies compare on the basis of fuel combustion (implying air 

quality and health impacts), climate change mitigation risk, and technology adoption and 

implementation risk?   

 What are least regrets strategies that are likely to be indispensable in working towards carbon 

neutrality?  



 

 
 

P a g e  |  3  | 

 Executive Summary 

© 2020 Energy and Environmental Economics, Inc.   

Scenarios  

The authors evaluate three scenarios that achieve net zero emissions by 2045, excluding natural and 

working lands, using the California PATHWAYS model, each with ambitious reductions in fossil fuel-related 

GHGs and direct emissions of non-energy, non-combustion greenhouse gases.  All scenarios include high 

levels of energy efficiency across all sectors, high levels of renewable electricity generation, high levels of 

electrification in the transportation and buildings sector, and deep reductions in non-energy, non-

combustion greenhouse gas emissions like methane and HFCs. As a result, all scenarios achieve at least 

an 80% reduction in gross GHG emissions (under AB 32) by 2045 (“80x45”), representing new and 

ambitious actions and technology deployments to reduce emissions in California. As stated in California’s 

Executive Order D-55-18, achieving carbon neutrality by 2045 should be considered the minimum level of 

greenhouse gas reductions needed in the state, and more rapid progress towards carbon neutrality prior 

to 2045 may be considered in future scenario analyses.  

The scenarios differ in their level of adoption of advanced mitigation measures that result in over 80% 

reduction in GHG emissions by 2045 and their degree of their reliance on carbon dioxide removal (CDR) 

to achieve carbon neutrality by 2045.1  

 The High CDR scenario achieves an 80% reduction in gross greenhouse gas emissions by 2045, 

and of the scenarios evaluated, relies most heavily on carbon dioxide removal strategies to 

achieve carbon neutrality by 2045.   

 The Zero Carbon Energy scenario achieves zero-fossil fuel emissions by 2045, with some 

remaining gross emissions from non-combustion and high GWP gases by 2045. CDR strategies are 

minimized in this scenario.   

 
1 Carbon dioxide removal is a term that encompasses many forms of GHG removal from the atmosphere, whether through natural and working lands 
carbon sequestration (not evaluated here), or through negative emissions technologies that actively pull carbon dioxide out of the atmosphere, such 
as direct air capture or biomass energy with carbon capture and sequestration. 
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 The Balanced scenario represents a middle point between the prior two scenarios in terms of 

energy-related GHG reductions. This scenario includes less CDR than the High CDR scenario, and 

more CDR than the Zero Carbon Energy scenario.  

Scenario Results  

The scenarios are ranked based on their performance across key metrics, including health-related air 

quality impacts (approximated based on combustion of fuels), climate risk, and technology adoption and 

implementation risk. Carbon abatement cost ranges for the advanced mitigation measures and carbon 

dioxide removal required for each scenario to go beyond 80x50 and achieve carbon neutrality are also 

evaluated but the relative cost impact of each scenario is deemed uncertain. 

 The High CDR scenario achieves approximately an 80% reduction in direct GHG emissions by 2045, 

with approximately 80 million metric tons (MMT) of CO2e removed from the atmosphere using a 

combination of CDR strategies. This scenario represents the highest risk scenario, from a climate 

mitigation perspective, because it has the highest remaining direct GHG emissions, and relies on 

relatively untested CDR strategies which are not widely commercialized. The scenario also has the 

highest remaining quantity of fuel combustion, which means the air quality impacts, though far 

improved relative to today, will likely be highest among the three carbon neutral scenarios 

evaluated. Both the climate risks and the technology adoption and implementation risks of relying 

so significantly on CDR are high. Continuing to emit such a large share of gross emissions into the 

atmosphere through 2045 could result in an overshoot of emissions, with a risk of missing the 

state’s climate goals if CDR options are not implemented early on. Furthermore, many CDR 

options rely on a significant amount of land and energy resources, rendering the implementation 

of CDR at scale uncertain. The cost of CDR strategies vary widely, depending on which strategies 

are deployed. In general, land-based carbon sequestration strategies are estimated to be lower 

cost than negative emissions technologies (NETs) like bioenergy with carbon dioxide capture and 

storage (BECCS) or direct air capture of carbon dioxide paired with storage (“DAC with CCS” or 

“DACCS”), but the land-based CDR solutions in California are likely to be limited. Given the wide 
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range of uncertainties around the costs of CDRs, we cannot conclusively estimate whether the 

High CDR scenario is lower or higher cost than the other scenarios.   

 The Zero Carbon Energy scenario represents the other bookend strategy to achieve carbon 

neutrality in California, whereby all fossil fuel emissions are avoided or mitigated through a 

combination of advanced (and ambitious) mitigation measures. These measures include more 

rapid and more complete deployment of electrification strategies in buildings, transportation and 

some industrial processes, as well as deployment of more speculative technologies such as 

electric aviation and hydrogen fuel-cell trains.  Hydrogen and synthetic natural gas are deployed 

in industry and in the natural gas pipeline to fully displace or mitigate all remaining fossil fuel 

emissions in this scenario by 2045.  The remaining gross GHG emissions, approximately 33 MMT 

CO2e by 2045, represent a 92% reduction in gross emissions relative to 1990 levels. These 

remaining emissions are from non-energy, non-combustion GHG emissions, including methane 

from agriculture and waste, that appear to be difficult to fully mitigate using today’s technology 

solutions. These remaining direct emissions sources are mitigated with CDR strategies in this 

scenario. As a result of the rapid deployment of emission reduction strategies and the more 

limited reliance on CDR, the zero-carbon energy scenario has the lowest climate risk, achieving 

deeper carbon reductions in 2030 (45% below 1990 levels versus 40% reductions in the other 

scenarios). While this scenario’s limited reliance on CDR helps to reduce the technology adoption 

and implementation risk along one dimension, the scenario also relies on early deployment of 

advanced mitigation measures and technologies, some of which are not commercially available 

today. All of the technologies deployed in this scenario have been demonstrated at a minimum in 

a lab setting but would require further RD&D to bring to commercial scale. In addition, the 

scenario relies on fully decarbonizing transportation sector emissions and eliminating all fuel 

combustion in buildings. Eliminating all transport emissions may be challenging as some of these 

vehicles may not fall directly under the regulatory authority of state agencies, including interstate 

trucking, shipping, trains, and aviation. Likewise, eliminating fossil fuel combustion in buildings by 

2045 would be particularly challenging as it would require early and rapid deployment of electric 

end uses in buildings, as well as a plan for how to safely reduce, and eventually eliminate, gas 

throughput across the substantial retail gas infrastructure in the State. The cost of the scenario, 

may in fact be comparable to the other scenarios because, while it relies on the least amount of 
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CDR and more rapid deployment of lower cost measures, such as zero-emissions trucks, it also 

relies on higher cost measures, including synthetic natural gas and industrial uses of hydrogen 

and electrification.  The balance of these lower-cost and higher cost strategies means that the 

total costs could be within a similar range of the other scenarios. Overall, there are many cost 

uncertainties in all of these emerging technologies, making it difficult to conclude whether the 

zero-carbon energy scenario is lower or higher cost than the other scenarios evaluated here.  

 The Balanced scenario represents a blend of measures implemented in the other two scenarios. 

While it still relies on rapid deployment of electrification and other carbon mitigation strategies, 

the deployment of electrification technologies is not as rapid as in the zero-carbon energy 

scenario.  Further, the balanced scenario includes less reliance on some of the more speculative 

measures such as electric aviation and fuel-cell trains. This scenario does not include some of the 

most expensive carbon mitigation measures, such as synthetic natural gas in the pipeline.  This 

scenario includes approximately 56 MMT of CO2e from CDR strategies in 2045, which is less than 

the High CDR scenario and more than the zero-carbon energy scenario.    

Figure 1 below illustrates California’s estimated greenhouse gas emissions by sector in 2020, and that for 

each of the three scenarios in 2045 as well as the relative amount of carbon dioxide removal needed to 

negate remaining GHG emissions. Statewide greenhouse gas emissions in 1990 were 431 MMT CO2e. The 

High CDR scenario achieves an 80% reduction in gross GHG emissions by 2045, while the Balanced scenario 

achieves an 87% reduction, and the Zero Carbon Energy scenario achieves a 92% reduction in gross GHG 

emissions by 2045, relative to 1990 levels.   

In the Zero Carbon Energy scenario, energy-related emissions from industrial, transportation, and 

residential and commercial building sources are eliminated by 2045.  The remaining emissions in this 

scenario are from non-combustion GHGs including methane and other high GWP gases, as well as non-

combustion GHG emissions from the recycling and waste and agriculture sectors.    
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Figure 1. Greenhouse gas emissions by sector in 2020 and 2045, by scenario, including total CDR 
required to achieve carbon neutrality in 2045 (excluding potential sources from NWL) 

 

Figure 2 summarizes the relative differences between the three scenarios on the basis of estimated 

potential health impacts from criteria pollutants (approximated based on the total fuel combustion in 

2045 in each scenario), climate change mitigation risk (based on cumulative, gross emission reductions 

between 2020 and 2045), and the potential for technology adoption and implementation risks. Scenarios 

with higher fuel combustion are likely to be associated with worse air quality and health impacts, although 

a more detailed analysis of the air quality impacts of each scenario may be warranted.  Scenarios with 

lower total and cumulative greenhouse gas emissions are associated with lower climate change mitigation 

risk. Technology and adoption risk are estimated based on the degree of reliance on non-commercialized 

or technologically challenging mitigation options, such as direct air capture or accelerated electrification 

in buildings and transportation.  
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Figure 2. Carbon neutral scenario comparison across key metrics  

 

This summary figure illustrates that among the three scenarios evaluated here, the High CDR scenario 

faces the highest risks in terms of remaining health impacts, climate change mitigation risk and 

technological feasibility. The Balanced scenario performs the best on the basis of technological feasibility 

and implementation risk, while the Zero Carbon Energy scenario performs the best on the basis of reduced 

health impacts and reduced climate risk.  

Key Findings  

LEAST-REGRETS OPTIONS  

Achieving carbon neutrality by 2045 requires ambitious near-term actions around deployment of energy 

efficiency, transportation and building electrification, zero-carbon electricity, and reductions in non-

energy, non-combustion greenhouse gas emissions. These least-regrets strategies are common across all 

deep decarbonization strategies.  



 

 
 

P a g e  |  9  | 

 Executive Summary 

© 2020 Energy and Environmental Economics, Inc.   

In addition, achieving carbon neutrality will require scaling up research, development and deployment 

(RD&D) efforts around CDR strategies, such as land-based carbon sequestration and direct air capture of 

CO2.   

Achieving the zero-carbon energy scenario requires rapid deployment of electrification in vehicles and 

buildings achieving 100% electric or zero-carbon energy sales shares by 2030, if expensive early retirement 

of equipment is to be minimized. Likewise, very low carbon, if not zero-carbon electricity will be needed 

by 2045 in order to support these high levels of electrification.  This will require rapid adoption of 

renewable generation and renewable integration solutions, at a pace which exceeds recent historical 

levels of wind and solar adoption. An inter-agency research process is underway to evaluate in more detail 

the electricity sector implementation strategies and implications of achieving the state’s SB 100 goal of 

meeting 100% of retail sales electricity with zero-carbon electricity.   

All carbon neutral scenarios achieve dramatic reductions in fossil fuel combustion and fossil fuel 

emissions, which will result in global climate change benefits, as well as the potential for improvements 

in local air quality and associated health impacts.  Scenarios with lower fossil fuel combustion will achieve 

greater improvements in statewide air quality and, likely, local health impacts.  However, local health 

benefits in any specific community will be location and source specific.  Although outside the scope of this 

analysis, properly valuing the local air quality and health benefits associated with reducing fuel 

combustion is an important consideration in designing California’s carbon-neutral future.  

CHALLENGES, RISKS, AND OPPORTUNITIES 

By any measure, in any scenario, achieving carbon neutrality by 2045 will require a wholesale 

transformation of California’s energy economy.  There are numerous technology, policy, and consumer 

adoption implementation challenges which will need to be overcome across every sector. However, these 

challenges and risks must be considered within the context of the risk which climate change presents to 

our collective health and wellbeing. Reducing greenhouse gas emissions presents an opportunity to not 
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only mitigate the worst impacts of climate change, but also to improve local air quality and health 

outcomes, and to consider new energy solutions that contribute to a higher quality of life and improved 

energy and public health equity across the state. Furthermore, while evaluating scenarios that achieve 

carbon neutrality prior to 2045 was not considered within the scope of this study, the state’s EO B-55-18 

calls for carbon neutrality as early as possible. A more rapid transition to carbon neutrality would equate 

to even more rapid transformations than considered here. 

All scenarios presented here rely to different degrees on carbon dioxide removal strategies, meaning that 

RD&D around these options represents a least-regret option.  However, it is risky to rely too heavily on 

CDR strategies as the primary pathway to carbon neutrality.  Some CDR strategies carry the risk that they 

may not permanently sequester carbon, such as wildfire risks associated with forest management, while 

other CDR strategies, such as direct air capture, rely on continuous energy inputs and maintenance in 

order to pull carbon dioxide out of the atmosphere. A higher reliance on CDR strategies may mean that 

achieving carbon neutrality, and net negative emissions post 2045, presents a higher climate risk than 

scenarios with greater reductions in gross emissions.  

The range of emissions quantities evaluated here, and removed with CDR by 2045, is between 33 and 80 

MMT CO2 a year. The total amount of CDR would need to increase over time in order to achieve net 

negative emissions by mid-century and beyond.  For context, the total estimated increase in carbon stock 

in California’s croplands and urban forests, across the time period from 2012 – 2014, is the equivalent of 

sequestering an average of 19 MMT of CO2e per year.2 Likewise, the total carbon stock decrease in 

California’s forests and other natural and working lands between 2001 and 2010 averaged to an 

equivalent of 63 MMT CO2e per year during that period.3 To contextualize the 2045 CDR numbers using 

 
2 California Air Resources Board, 2018. “An Inventory of Ecosystem Carbon in California’s Natural & Working Lands: 2018 Edition” Page 8 
https://ww3.arb.ca.gov/cc/inventory/pubs/nwl_inventory.pdf 
3 Ibid 

https://ww3.arb.ca.gov/cc/inventory/pubs/nwl_inventory.pdf
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an example from the energy sector, total GHG emissions from California’s electricity sector in 2017 were 

a similar order of magnitude, at 62 MMT CO2e.   

Setting in motion the steps necessary to achieve deeper reductions in gross GHG emissions in the 2045 

timeline, along the lines of the Zero Carbon Energy scenario, or even earlier, would also necessitate faster 

and deeper GHG reductions in the 2030 timeframe.  Early actions taken now to reduce emissions from 

transportation, vehicles, and buildings, will not only help ensure that the state is on track to meet its 

ambitious 2030 climate goals, but will also reduce the risk of missing the carbon neutrality target.   

UNCERTAINTIES 

Many key uncertainties remain around the achievement of carbon neutrality in California.  One of these 

uncertainties is the optimal use and deployment of zero-carbon fuels in hard-to-electrify sectors, including 

certain high temperature industrial processes, heavy-duty long-haul trucking, aviation, trains, and 

shipping.  These fuel uses may be met with a combination of fossil fuels, hydrogen, synthetic zero-carbon 

fuels, or biofuels.  It is still uncertain how the relative costs of these technologies will evolve over time.  

As the cost of wind and solar decline, the cost of renewable hydrogen production is also falling, making 

hydrogen a more attractive solution than biofuels for some applications.  The market for sustainable 

biofuels remains nascent, making it uncertain how much sustainable biomass supply will be available, and 

what the best uses for these biomass resources will be through mid-century.4  

 
4 The Appendix includes more information about how the biomass supply assumptions applied in this study compare to other recent studies. Although 
there is some uncertainty around the total quantity of sustainable biomass supply, this study’s estimates fall within the range of other recent studies 
on this topic. The study results would not be significantly altered if these other biomass supply assumptions were applied. 
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Introduction 

1.1 What Climate Science Tells Us About the Urgency of Reducing 
Greenhouse Gases  

Scientists across the world agree that limiting global warming to 1.5 degrees Celsius (°C) or less is critical 

to averting the worst impacts of climate change.  Limiting global warming to 1.5°C, with high confidence, 

will require, globally, about a 45% reduction in CO2 emissions from 2010 levels by 2030 (which is 

proportionate to the scale of California’s goal of a 40% reduction from 1990 levels by 2030), and reaching 

net zero emissions by mid-century (IPCC, 2018).    

The Intergovernmental Panel on Climate Change (IPCC) reports summarize the current state of our 

scientific understanding of climate change, and the impacts and implications of climate change across the 

world. California’s Fourth Climate Change Assessment compiles the most recent and rigorous research on 

the impacts of climate change to the state, as well as the benefits of reducing greenhouse gas emissions. 

Both of these resources clearly indicate that, as a society, we must both lower our greenhouse gas 

emissions, and deploy carbon dioxide removal strategies including improved carbon sinks in forests, soils 

and oceans, in order to reduce global temperature increases, and to mitigate the risks of climate-change 

induced natural disasters such as wildfires, hurricanes, droughts, and flooding.  

This research in California, and across the globe, confirms that the impacts of climate change will be felt 

disproportionately by lower income and vulnerable groups. Lower greenhouse gas emissions thus 

translate directly to better health, equity, and economic outcomes for Californians and the world.  

Reducing greenhouse gas emissions is an important form of promoting a more just and equitable future 

(Kalansky, 2018).   
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1.2 Motivating Questions and Report Organization  

This study seeks to provide insights into what a carbon neutral future for California may look like, from a 

technology deployment perspective with a focus on strategies to reduce gross emissions from the energy 

sector. It was outside of the scope of this study to evaluate scenarios that achieve carbon neutrality prior 

to 2045; scenarios that achieve more rapid progress towards this goal remains an interesting area for 

future research. This study is designed as one piece of the puzzle to help inform the California Air 

Resources Board’s development of the 2022 climate change scoping plan. Emissions sources and sinks 

from natural and working lands, while an important part of achieving carbon neutrality, are outside the 

scope of this paper. Likewise, additional considerations around social and environmental justice and 

equity will be considered in the development of the next Scoping Plan. The motivating research questions 

for this work are narrower, and include:  

 What are the available energy and non-combustion GHG reduction strategies to help achieve 

carbon neutrality by 2045?  

 How should California consider the tradeoffs between achieving additional energy-sector 

greenhouse gas reductions versus relying on carbon dioxide removal?   

 How do different mitigation strategies compare on the basis of fuel combustion (implying air 

quality and health impacts), climate change mitigation risk, and technology adoption and 

implementation risk?   

 What are least regrets strategies that are likely to be indispensable in working towards carbon 

neutrality?  

The next sections describe California’s climate goals, as well as the current state of carbon neutral climate 

goals and research in other jurisdictions, with a focus on European research into deep decarbonization 

futures.  Chapter 2 describes the modelling approach, the scenarios evaluated, the GHG reduction 

strategies available within each sector and a summary of key results from each scenario, with a focus on 
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2045 results.  Chapter 3 discusses the implications and overall findings of the study results. Chapter 4 

concludes and highlights next steps for further investigation and research.  

1.3 California’s Carbon Neutral Executive Order and Supporting 
Policies  

Nearly every country has agreed, as part of the 2016 Paris Agreement of the United National Framework 

Convention on Climate Change (UNFCCC), to significantly reduce and limit the impacts of climate change. 

The common goal is to limit global warming to no more than 2°C, while working towards a goal of 1.5°C 

or less. While the United States is currently withdrawing from the global Paris Agreement (expected to be 

effective in November 2020), California, and many other U.S. states, counties, and cities, remain 

committed to these climate goals as climate change will have unique and acute impacts at each of these 

levels.   

Consistent with the IPCC Special report, in 2018, Governor Brown signed Executive Order B-55-18 which 

calls for California to achieve carbon neutrality as soon as possible, and no later than 2045.  The state is 

to maintain net negative emissions after 2045, meaning that GHG sinks must exceed GHG sources. The 

Executive Order explains that the carbon neutrality goal is layered on top of the state’s existing 

commitments to reduce greenhouse gas emissions 40% below 1990 levels by 2030 (as codified in SB 32), 

and 80% below 1990 levels by 2050.  

The carbon neutrality Executive Order describes other characteristics of the goal, including improving air 

quality, climate adaptation and biodiversity, and supporting the health and economic resiliency of urban 

and rural communities, including low-income and disadvantaged communities. The carbon neutral 

climate goal will also include carbon sequestration targets from natural and working lands, which are still 

under development. These will be the focus of a separate CARB report and not part of the scope of this 

analysis. The Order leaves open the question on how far the state will go in decreasing gross GHG 



 

 
 

P a g e  |  15  | 

 Introduction 

© 2020 Energy and Environmental Economics, Inc.   

emissions beyond 80% by 2050 from 1990 levels compared to how much of the State’s gross emissions 

can be mitigated by carbon dioxide removal options.  

California has enacted a suite of carbon mitigation policies designed to move the state towards achieving 

these climate goals, with the focus to date on meeting the state’s 2030 climate goal.  These policies include 

cap-and-trade, the low carbon fuel standard, a requirement for 60% of retail electricity sales to be met by 

renewables in 2030 followed by zero-carbon retail and state electricity sales by 2045 (SB 100), a doubling 

in energy efficiency (SB 350), the advanced clean truck standard, as well as reductions in short-lived 

climate pollutants like methane and HFCs, among many others.  

While California is making progress towards reducing greenhouse gas emissions, the pathway to carbon 

neutrality by 2045 is still under consideration, and many technological, legal, and other research questions 

remain outstanding about how California will achieve this ambitious goal.  This report represents one 

piece of the puzzle in understanding the clean energy technology deployment pathways that could help 

inform the state’s broader look at carbon neutrality, including natural and working lands and other 

considerations, which will be reflected in the 2022 Scoping Plan. 

1.4 Strategies and Findings Across Carbon Neutral Studies  

After reviewing a number of carbon neutrality studies, most of which have been published in Europe to 

date, we can identify several commonalities across all of these studies which are useful to informing a 

study of how California may achieve carbon neutrality.  Across all studies and jurisdictions, there is a 

strong reliance on: 1) energy efficiency, 2) electrification, 2) low-carbon fuels, including low-carbon 

electricity and some reliance on low-carbon liquid and gaseous fuels, such as hydrogen, for hard-to-

electrify sectors, and 4) carbon dioxide removal (CDR), including carbon sinks in natural and working lands 

and negative emissions technologies (NETs). All of these studies highlight the importance of maximizing 

available land sinks and, as a necessity, generally have some reliance on negative emissions technologies.  
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Nearly all studies and jurisdictions agree that there is no silver bullet solution towards deep 

decarbonization. A mix of all options and available technologies is necessary to meet carbon neutrality, 

with a common goal among European studies of achieving at least a 90% reduction in economy-wide gross 

emissions by 2050. While some pathways have a strong reliance on technology and innovation to fill this 

mix, others lean towards societal disruptions and consumer behavioral changes (Tsiropoulos, Nijs, 

Tarvydas, & Ruiz, 2020).  

Key areas of uncertainty and differences between these studies include: 1) types and level of zero-carbon 

fuel use (e.g. hydrogen vs. biofuels vs. carbon capture and sequestration (CCS)), 2) the level of 

electrification across sectors and the absolute growth of the power sector, 3) the emphasis on behavior 

change and disruptive societal/economic changes, and 4) the reliance on different forms of negative 

emissions technologies.  

All global or national deep decarbonization pathways that limit global warming to 1.5°C use CDR 

technologies to some extent to neutralize emissions from sources for which mitigation is challenging, and 

to achieve net negative emissions after mid-century (Rogelj, et al., 2018). However, as IPCC notes, the 

reliance on such technologies is risky as most CDR deployment options are unproven. 

Decarbonization studies are often paired with some form of carbon price, either in the form of a carbon 

tax or cap-and-trade system, or as a societal shadow price (Lempert, et al., 2019). According to the IPCC 

Special Report, policies reflecting a high price on carbon emissions coupled with complementary policy 

instruments will minimize overall decarbonization costs (Rogelj, et al., 2018) 

1.4.1 EUROPEAN DEEP DECARBONIZATION STUDIES  

The European Union countries and the United Kingdom (UK) have become national-level leaders in deep 

decarbonization in particular in their development of policies and plans for decarbonization options across 

the economy. A few European decarbonization studies and plans are highlighted throughout this study to 
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provide broader context for comparing with this work’s sub-national California-based decarbonization 

measures across all sectors and emissions sources.   

European deep decarbonization studies have reached a consensus on the level of fossil phase-out: all 

scenarios phase down the use of coal by 70% by 2030 (almost 100% for electricity generation) and phase 

out coal 100% by 2050, with a decline in oil and natural gas use of at least 75% by 2050. In each of the 

studies reviewed here, the use of natural gas in Europe declines sharply towards 2050, but natural gas still 

has a significant role to play towards 2030 (the majority of the fossil natural gas phase-out thus takes 

place between 2030-2050). Countries with a strong reliance on natural gas infrastructure, such as the UK 

and the Netherlands, focus on hybrid electrification with some continued use of fossil and renewable 

natural gas options (using a mix of natural gas, biomethane and blended hydrogen) towards 2030 to 

ensure that peak heat demands in cold winter-time periods are met at least cost, using a mix of electricity 

and gas pipeline infrastructure, as well the potential for a new dedicated hydrogen pipeline backbone. A 

recent report from eleven gas infrastructure companies in Europe presents a vision for a dedicated 

hydrogen pipeline that would initially serve clustered industrial facilities in Northern Europe, and which 

could expand to provide green hydrogen to a broader range of industrial, transport and some building 

heating loads by 2040 (Wang, van der Leun, Peters, & Buseman, 2020).   

A review of 16 European scenarios by the European Commission that reach economy-wide emission 

reductions by at least 90% in 2050 analyzes the differentiation in the final energy mix among 2050 

scenarios. All European scenarios forecast a significant reduction in final energy consumption due to a 

combination of energy efficiency and electrification, though the range of reductions differs by 30-60%. 

Moreover, all scenarios generally rely on around 10-15% of (partly imported) biomass in the final energy 

mix (Tsiropoulos, Nijs, Tarvydas, & Ruiz, 2020). 

A commonality across jurisdictions is the uncertainty on the deployment and application of hydrogen. 

Many jurisdictions recognize a role for hydrogen in deep decarbonization pathways in the long term, but 
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the technologies used to deploy hydrogen and the sectors in which it adds most value are uncertain. 

Recently announced plans by the European Union and Germany place strong emphasis on the future 

deployment of green hydrogen and its application mostly for industrial and transportation purposes. In 

existing scenario studies however, the level of hydrogen consumption is one important factor in explaining 

the variance across electricity production.  

Nearly all existing European scenarios still rely on fossil fuels (mostly natural gas) with CCS and/or 

hydrogen by 2050 to provide flexibility in the electricity sector and for high-temperature applications in 

industry. In particular, these studies find that CCS plays a key role in heavy industrial sectors (cement, iron 

and steel) and for some flexible electricity production. In the context of these European deep 

decarbonization scenarios, CCS technologies store between 0.1 and 0.45 GtCO2/year underground 

towards 2050, most of which is in offshore fields (Tsiropoulos, Nijs, Tarvydas, & Ruiz, 2020). This does not 

include the amount of CO2 storage that might be needed for negative emissions technologies such as 

direct air capture and bioenergy with CCS.  
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2 Modeling Approach, Scenario Design 
and Greenhouse Gas Reduction 
Strategies 

2.1 About the California PATHWAYS Model  

This study builds on prior research into scenarios that achieve California’s 2030 and 2050 (80x50) climate 

goals, using E3’s California PATHWAYS model (Williams, et al., 2012); (CARB, 2017); (Mahone, 2018); (Aas, 

2020)).  The California PATHWAYS model is a “techno-economic” scenario-based model representing 

energy consumption and greenhouse gas emissions in California through 2050. Energy consumption in 

the residential, commercial and transportation sectors are represented at the end use level, including for 

lighting, space heating, water heating, cooking, and different vehicle types, among other end uses. Energy 

consumption in the industrial, oil and gas, petroleum and agriculture sectors are represented at the fuel-

use level. Non-energy, non-combustion greenhouse gas emissions are also represented, based on GHG 

accounting protocols from the California greenhouse gas emissions inventory. As previously discussed, 

this study does not include GHG emission sources or sinks from natural and working lands in California, 

which are being separately evaluated by state agencies.   

As a technology-based, economy-wide, greenhouse gas emissions accounting model, the scenarios 

developed in the tool reflect key interactions between sectors.  For example, electrification in buildings 

and transportation results in higher electricity demands and greater generation capacity needs, reflected 

in the electricity sector.  Renewable fuel demands, including for hydrogen, synthetic gas and biofuels, are 

represented in a fuels supply module, which accounts for the resource potential and cost of available 

biomass feedstocks.   
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The scenarios developed here are tailored to reflect different worldviews and assumptions about the 

future pace of technology and policy deployment.  Apart from the biofuels supply module, which includes 

a least-cost optimization selection process, the scenarios do not reflect an economy-wide, least-cost 

optimization. The authors, rather than the model, “pick” the pace of technology deployment and the 

technology mix for each scenario, constrained by the goal of achieving the state’s 2030 and 2045 carbon 

neutrality climate goal using a stock-roll over model to reflect a realistic turn-over timeline for end use 

equipment.  For more information about the California PATHWAYS model, see the CARB 2017 Scoping 

Plan modeling information for PATHWAYS (CARB, 2017) and the model description and appendices in 

Mahone, 2018.   

2.2 Greenhouse Gas Emissions Accounting and Boundary Conditions 

The California Air Resources Board 2019 Greenhouse Gas Emission Inventory is used as the basis for GHG 

accounting in this analysis, and for drawing the boundaries around which sources of emissions are 

counted in these scenarios.  The GHG inventory is used because it is the basis for the state’s 2030 climate 

change law, SB 32, which sets the state’s 2030 target of 40% GHG reduction relative to 1990 levels.  

Emissions from natural and working lands will be included in the updated 2022 Scoping Plan evaluation 

of carbon neutrality by 2045 but are not part of the scope of this analysis.  

The inventory, and the PATHWAYS model GHG accounting, are both designed to align with guidance from 

the IPCC’s Fourth Assessment report, applying 100-year global warming potential factors when comparing 

emissions from carbon dioxide to other global warming gases, including methane, nitrous oxide and other 

fluorinated gases such as hydrofluorocarbons (HFCs). California’s emissions accounting approach includes 

an estimate of in-state anthropogenic greenhouse gases, as well as emissions from imported electricity. 

Emissions from in-state aviation and shipping within 24 nautical miles of the state’s coastline are included, 

but emissions from interstate and international aviation and shipping outside of the state’s coastal 
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boundaries are excluded. Biofuels are treated as zero-carbon fuels in this accounting approach, following 

IPCC GHG inventory guidance.  

The potential for California’s natural and working lands to serve as an emissions sink in the future remains 

an on-going area of research in the state. Greenhouse gas emissions and carbon sinks from natural and 

working lands are not currently included in the CARB AB 32 Annual GHG inventory or in the PATHWAYS 

model. Land-based and natural ecosystem carbon sinks are likely to play an important role in meeting the 

state’s long-term climate goals, as is controlling emissions from wildfires and other lands.  Given the 

ongoing research into this topic, the scenarios developed here do not explicitly include land-based 

emissions, either sources or sinks, in the 1990 GHG baseline or in the emissions reduction scenarios.  

Rather, the total amount of CDR needed in each scenario to achieve carbon neutrality by 2045 is specified.  

The CDR in each scenario could come from a range of solutions, including carbon sinks from natural and 

working lands, or from NETs such as direct air capture.  

2.3 Carbon Neutral Scenarios 

In this report, we evaluate three different scenarios that achieve carbon neutrality by 2045 (excluding 

sources from NWL), distinguished by their degree of reductions from fossil fuel-based greenhouse gas 

emissions versus CDR strategies, including land-based carbon sinks and NETs.  All of the scenarios achieve 

at least a 40% reduction in GHG emissions by 2030 and an 80% reduction in GHGs by 2045, relative to 

1990 levels, without any reliance on CDR. The three scenarios are evaluated based on the potential costs, 

fuel combustion (used as a proxy for air quality-related health impacts), climate change mitigation risk 

and technology and implementation risk and feasibility of each scenario. A “reference” or 

“counterfactual” scenario is not evaluated in this study but will be an important focus of CARB’s next 

Scoping Plan. 
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 The “High Carbon Dioxide Removal” scenario includes a broad range of deep decarbonization 

strategies, which are similar to E3’s prior “high electrification” scenario, including energy 

efficiency, electrification, low-carbon fuels, zero-carbon electricity, and reductions in non-energy 

GHG emissions. In addition, off-road transportation electrification is accelerated, and industrial 

carbon capture and sequestration (CCS) is assumed, in order to achieve just over 80% reductions 

in direct GHG emissions by 2045. In this scenario, 80 million metric tons (MMT) of CO2e from 

fossil fuel combustion and non-energy GHGs in 2045 remain. These gross emissions net to zero 

by applying 80 MMT of carbon dioxide removal strategies, including sinks from natural and 

working lands and negative emissions technologies like direct air capture.   

 The “Zero-Carbon Energy” scenario includes a similar set of decarbonization strategies as the 

High CDR scenario, but these strategies are deployed earlier and more deeply. As a result, 2030 

GHG emissions are lower in this scenario, achieving a 45% reduction in GHGs by 2030, relative to 

1990 levels. In addition, emerging emission reduction technologies, including synthetic natural 

gas in the gas pipeline, electric aviation, and fuel-cell trains in off-road transportation are applied, 

in order to eliminate all fossil fuel emissions by 2045.  In the zero-carbon energy scenario there 

are zero fossil fuel emissions by 2045. The remaining 33 MMT of CO2e in 2045 in this scenario 

come from non-energy sources of GHGs, including methane from agriculture. These gross 

emissions are mitigated using CDR strategies to achieve carbon neutrality. 

 The “Balanced” scenario represents a balance between the measures in the High CDR scenario 

and the zero-carbon energy scenario, which each represent a bookend approach towards 

achieving carbon neutrality.  The balanced scenario includes less reliance on CDR strategies, 

compared to the High CDR scenario, but also has less reliance on the more speculative emission 

reductions technologies included in the Zero-Carbon Energy scenario, like electric aviation and 

hydrogen fuel-cell trains.  In addition, the pace of electrification is somewhat slower in the 

balanced scenario compared to the zero-carbon energy scenario.  This scenario results in 56 MMT 

of CO2e in 2045, about half of which is from fossil fuel emissions and half of which is from non-

energy GHG emissions, which must be reduced with CDR strategies.  
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A summary of the key emission reduction strategies applied in each scenario are summarized in Table 1 

below. More details about the sector-by-sector assumptions in each scenario are described in Section 2 

below, including a discussion of the carbon mitigation strategies evaluated in each sector.   
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Table 1. Summary of emission reduction strategies by scenario (measures that are the same across all 
scenarios are shown in grey font)5  

 

Figure 3 below illustrates the gross greenhouse gas emissions in 2020 and 2045 for each of the three 

scenarios, and the magnitude of carbon dioxide removal that would be needed to achieve carbon 

 
5 Percentage hydrogen blend is given as a % of energy input. Prior E3 studies (Mahone, 2018) have evaluated up to 7% hydrogen blends as a percentage 
of energy input in some scenarios. An additional 2% increase in hydrogen blended into the gas pipeline should be technically feasible, but would not 
have a substantial impact on the scenario results presented here. 
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neutrality in each scenario. Figure 4 illustrates the trajectory of gross greenhouse gas emissions in each 

scenario, between 2020 and 2045, prior to the application of CDR strategies.   

Figure 3. Greenhouse gas emissions sources and sinks by sector in 2020 and 2045, by scenario 
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Figure 4. California statewide gross greenhouse gas emissions by scenario (2020 – 2045), excluding the 
impacts of carbon dioxide removal (CDR) strategies 

 

 

2.4 GHG Reduction Strategies by Sector  

The following section dives into the specific measures adopted, results across each sector, and gross 

emissions sources for all three scenarios. These sectors include:  

 Low Carbon Fuels  

 Buildings  

 Transportation 

 Industry and Agriculture 

 Electricity  
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 High GWP Resources 

 Carbon Dioxide Removal 

 Each of these subsections includes an initial overview of the sector’s decarbonization challenges as 

discussed in the broader global literature, often using European studies as examples, followed by a deeper 

dive into the California context of decarbonization measures and policies for that sector and finally 

providing a specific breakdown of the measures applied in each scenario for that sector or group of 

emissions.  

2.4.1 LOW-CARBON LIQUID AND GASEOUS FUELS  

Most decarbonization pathways show a significant reliance on low-carbon (or zero carbon) liquid and/or 

gaseous fuels across all sectors of the economy (buildings, industry, transportation, and electricity) in 

order to meet climate goals, and in particular when targeting net zero emissions. The low carbon liquid 

and gaseous fuels most often referred to in these studies include, but are not limited to, hydrogen, 

synthetic fuels, and biofuels (including biomethane). These fuels can satisfy the same energy services as 

their fossil counterparts but are instead produced from renewable resources, or require carbon capture 

and sequestration. The renewable resources used to produce such low carbon fuels typically fall in two 

categories: biomass or electricity from renewable energy resources (direct use of low-carbon and zero-

carbon electricity is discussed in a subsequent section).  

Biomass can be used to produce biomethane, biofuels or hydrogen. Thermochemical conversion 

processes such as gasification or pyrolysis are usually assumed in producing such fuels. The process itself 

however does require a significant source of energy and heat to process the biomass and conduct 

gasification. In the case of biofuel production some further processing is required to produce specific 

hydrocarbons such as renewable diesel or renewable jet kerosene (Bui, Fajardy, Zhang, & Mac Dowell, 

2020). Biological processes, such as anaerobic digestion, are also considered promising in converting 
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biomass to biomethane. These conversion processes, however, are limited by the availability of digestible 

biomass feedstocks.    

Liquid and gaseous fuels produced via electricity powered by renewables are mainly discussed as being 

hydrogen and synthetic fuels (in the EU studies also referred to as “e-fuels”). Most of the hydrogen 

produced today (about 97%) comes from fossil fuels typically using a process called steam methane 

reforming (IEA 2019) and is referred to as “grey hydrogen”. A low carbon version of this process exists, 

combining steam methane reforming with CCS to capture the carbon dioxide from the natural gas 

reforming process, referred to as “blue hydrogen”. Decarbonization studies and regional investment plans 

for the EU and Germany, however, are focusing increasingly on “green hydrogen”: hydrogen produced via 

electrolysis and powered by renewable energy (European Commission, 2020) (Federal Government of 

Germany, 2020). Combined with a push to move away from fossil fuels, the appeal of water electrolysis 

powered by renewables to produce hydrogen is driven by decreasing costs in wind and solar generation 

and a projected increase in commercialization of electrolyzers such as Alkaline Electrolysis Cells and Solid 

Oxide Electrolysis Cells (UCI 2018). Today the cost of “green hydrogen” is two to seven times greater than 

the cost of “grey hydrogen”, depending on the renewable energy resource available, but the cost is 

expected to decline substantially (IEA, 2019); (Schmidt, et al., 2017).  

There is an increasing consensus around the potential for “off-grid” renewables to power electrolysis 

energy needs to avoid additional transmission and grid infrastructure. In Europe, limited land availability 

is also driving a trend towards offshore wind powering electrolysis for hydrogen production (Philibert, 

2018). Hydrogen is a high energy density fuel by weight but low energy density fuel by volume and can 

easily leak from pipelines and valves. Hence, well-designed gas storage and compression are critical in 

being able to handle and transport hydrogen from its production site to its end user. These hydrogen-

specific infrastructure requirements add to the cost of delivering hydrogen and sometimes serve as an 

argument for promoting synthetic fuel use instead, which can be transported with existing 

infrastructure. Synthetic fuels have the advantage of being able to directly displace fossil fuel use 
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without the burner tip conversion, pipeline and turbine upgrades required with displacing fossil fuels 

with hydrogen but come at a considerable cost premium over hydrogen fuels.   

Synthetic fuels are typically produced via two types of processes: the Fischer-Tropsch process or the 

Sabatier process. Each of these require a hydrogen and a carbon dioxide input stream. While these 

processes are well known and proven, the cost of acquiring the hydrogen and the carbon dioxide remain 

high. To minimize net GHG emissions on a lifecycle basis, carbon dioxide is typically assumed to be 

obtained either via biomass waste processing or via direct air capture. The cost of synthetic fuels is likely 

to remain high, at about double that of hydrogen (Aas, 2020).  

Measures to incentivize the development of the hydrogen and synthetic fuels and benefits from 

economies of scale could help reduce the cost of production.  

2.4.1.1 The California Context  

In California, measures such as the Cap-and-Trade program and the Low Carbon Fuel Standard help to 

incentivize the development and deployment of low carbon fuels. Measures specific to each sector such 

as the ZEV Memorandum of Understanding (“ZEV MOU”) on passenger vehicles and California’s latest 

Advanced Clean Trucks regulation also further spur the development of low carbon fuels such as 

hydrogen.  

The ability to produce biogas, biofuels and hydrogen from biomass waste is limited by the availability of 

waste biomass available to California. In this study we assume that California has access to its population 

weighted share of national waste biomass production, based on estimates from the US Department of 

Energy biomass potential study, known as the Billion Ton Study (U.S. Department of Energy, 2016), 

amounting to 40 million bone dry tons (BDT) in 2045. The amount of biomass available for conversion to 

fuels will be subject to its use in other parts of the economy and can vary year on year based on changes 

in forest management and agricultural practices (i.e. agricultural residues). This study does not assume 
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that purpose-grown biomass (such as switchgrass) or biomass from petrochemical waste is used for 

biofuel production.  

Furthermore, large amounts of solar and wind in California and in neighboring regions can provide an 

excellent source of renewable energy for electrolysis to produce hydrogen. The West is also endowed 

with salt caverns and geological storage that can serve to store hydrogen in interim periods when 

renewable energy production and demand are not temporally aligned. This can be done at a very low cost 

compared to above-ground compression tanks (Mahone, Mettetal, & Stevens, 2020). Earlier studies have 

also investigated the potential for synthetic natural gas production in the region and using it to serve gas 

demand in local distribution networks (Aas, 2020). 

2.4.1.2 Scenario Comparison 

Figure 5 shows how low-carbon fuels are used in each of the scenarios in this study. All scenarios are 

assumed to have the same amount of biomass availability, and all scenarios use the total amount of 

biomass available. However, the allocation of biomass to fuel production pathways differs somewhat by 

scenario. In the High CDR scenario, biomass is allocated more or less evenly to produce renewable 

gasoline, renewable diesel, and biomethane. In the Balanced scenario, biomass is allocated mainly to 

produce renewable jet fuel and renewable diesel, as well as to biomethane in electricity to provide the 

~5% of electricity demand that is met with biomethane. In the Zero Carbon Energy scenario, biomass is 

allocated to renewable gasoline, renewable diesel, and renewable jet fuel, as well as to biomethane for 

electricity, as in the Balanced scenario.  

The use of biomethane to decarbonize the electricity sector is one option among several, and there is still 

uncertainty around what technologies will ultimately provide the best form of firm, zero-carbon capacity 

to the grid.  This need for firm capacity could also be served, in part or in full, by other zero carbon fuels 

such as hydrogen and synthetic natural gas, or via other, emerging long-duration energy storage 

technologies. If these alternative technologies were available to help decarbonize the electricity sector, 
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the biomass allocated to biomethane production in these scenarios could be made available to help 

decarbonize other sectors. 

It is also important to note that there is significant uncertainty regarding the potential for a biofuels 

production and distribution industry to be sustained for sectors that are rapidly electrifying - meaning the 

demand for biofuels could eventually reach zero over time. This situation of declining demands for liquid 

fuels, leading to an uncertain long-term investment environment, exists for renewable gasoline and some 

renewable diesel in the Zero Carbon Energy scenario. In the other two scenarios, demand for biofuels 

would be more or less sustained over time. 

Figure 5: Low-carbon fuel demand in 2045 by scenario in EJ 

 

2.4.2 BUILDINGS 

Increased reliance on energy efficiency and electricity in buildings for heating and water heating is 

common across all jurisdictions and scenarios in the literature that we reviewed. European scenarios for 

2050 show that the building sector could consume 20-55% less energy than it does today, partly by 

renovations of the building stock (Tsiropoulos, Nijs, Tarvydas, & Ruiz, 2020). For instance, the World 
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Energy Outlook’s “Sustainable Development” scenario from the International Energy Agency assumes a 

4% annual renovation rate post-2025 and scenarios by the European Climate Foundation assume 96% of 

the EU building stock are renovated by 2050 (European Climate Foundation, 2018) (International Energy 

Agency, 2019). With a relatively old building stock, the Buildings Performance Institute Europe calculates 

that over 97% of the European building stock must be upgraded to achieve 2050 decarbonization 

(Buildings Performance Institute Europe, 2017). The World Green Building Council recommends increasing 

renovation rates in industrialized countries to an average of 2% of existing stock per year by 2025, and 3% 

by 2040 (GlobalABC & International Energy Agency, 2019). 

In 2050, the use of natural gas in the European building stock is almost completely eliminated in deep 

decarbonization scenarios. The building sector increases its reliance on electricity across all jurisdictions 

and scenarios. In European studies, 37% to 62% of final energy demand is based on direct electricity 

consumption by 2050. Areas of difference across jurisdictions include the degree to which electrification 

is relied on to meet winter heating needs. Colder climates assume partial electrification and greater 

reliance on zero-carbon fuels.  

Most jurisdictions and scenarios agree that there is not sufficient biomethane/biofuels to replace natural 

gas use in buildings. Some natural gas heavy jurisdictions, such as the Netherlands, rely partly on the 

deployment of hybrid electrification (installing small electric heat pumps combined with high efficiency 

boilers) in which the winter peak is supplied by biomethane (The Oxford Institute for Energy Studies, 

2019), although green hydrogen could also meet these winter peak demands. Unlike in the U.S., European 

scenarios see an additional role for district heating networks in building heat supply. Across European 

studies, the building sector covers up to 30% of its heating needs through district heating, growing 2.5 

times higher than today (Tsiropoulos, Nijs, Tarvydas, & Ruiz, 2020). 

Building energy codes play an important role in setting standards for building construction that will reduce 

the long-term energy demands of the buildings sector. In the U.S., energy intensity in residential buildings 
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decreased 19% from 2007 to 2017 as a result of efficiency standards for equipment and appliances and 

stronger building codes (Leung, 2018). Across the world, 73 countries have mandatory or voluntary 

building codes in place or are developing them (GlobalABC & International Energy Agency, 2019). 

Most European studies consider the use of hydrogen in buildings, but only very few assume relatively high 

volumes (higher than 10% of final energy demand) (Tsiropoulos, Nijs, Tarvydas, & Ruiz, 2020). The 

Hydrogen Council states that the use of hydrogen in buildings is most attractive in countries generally with 

cold winters that already have extensive natural gas infrastructure in place, such as the UK, Canada and 

countries in continental Europe (Hydrogen Council, 2017). In their view, hydrogen could meet up to 18% 

of heat-related energy demand, by either blending with natural gas, methanization or in pure form. 

The IPCC notes that while the technology solutions to realize building decarbonization exist today, barriers 

such as split incentives6, lack of awareness, and low access to finance, hinder the market uptake of cost-

effective opportunities in the sector (Lucon, et al., 2014). Moreover, behavior, lifestyle, and culture have 

a major effect on buildings’ energy use, further complicating the building stock transition. 

2.4.2.1 The California Context 

Buildings in California are characterized by a high reliance on natural gas for space heating and water 

heating. Moreover, buildings in California have a relatively high share of space cooling demand compared 

to heating demands. The relatively mild winter climate makes building electrification more economically 

attractive and universally applicable than in colder climates. The absence of a significant winter peak 

suggests a heavier reliance on electrification in buildings may be feasible compared to jurisdictions with 

colder climates. 

 
6 “Split incentives” refers to situations where the party paying for energy (e.g. a tenant of a rental property) is different from the party paying for 
appliances that use energy (e.g. the landlord of a rental property). In these situations, the building owner has no incentive to pay more for an energy 
efficient appliance that would save money for the tenant over time.  
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The relatively new building stock in California, compared to Europe and the Eastern U.S., puts less 

emphasis on building renovations compared to jurisdictions where old, poorly insulated homes are the 

norm. In addition, these conditions make hybrid or district heating solutions, that are often considered 

for hard-to-renovate homes, less relevant. The California residential building stock is dominated by low 

and mid-rise buildings, facilitating the use of air source heat pump installations.  

2.4.2.2 Scenario Comparison  

In all scenarios, the SB 350 goal of doubling Additional Achievable Energy Efficiency (AAEE) by 2030 is met, 

as measured by a “combined” doubling metric where gas and electric EE are considered in aggregate. 

Electric EE savings come from a shift to selling only LED light bulbs by 2030 and increased efficiency for 

refrigerators, HVAC, and other plug load appliances, while gas EE savings come from more efficient 

furnaces, ovens/cooktops, and water heaters. Building envelope improvements contribute to EE savings 

for both fuels, with 24% of the building stock assumed to either be retrofit or constructed with a high 

efficiency shell by 2030 (this increases to 52% by 2045). Finally, energy savings resulting from fuel 

substitution are also responsible for a portion of meeting this goal. All scenarios achieve 46 TWh of electric 

energy efficiency in buildings in 2030 relative to a 2015 baseline, and 67 TWh in 2045. 

All scenarios involve a transition to all-electric end uses in buildings (for heating and HVAC, water heating, 

cooking and clothes drying), with the date of 100% sales share varying by scenario, as detailed below in 

Table 2. This transition towards building electrification involves substituting gas end uses for high 

efficiency electric end uses, such as heat pumps, at the end of their useful life (this is known as “replace 

on burnout”) as well as in newly constructed buildings. No early retirement of gas appliances is assumed 

in the High CDR and Balanced scenarios, while the Zero Carbon Energy scenario assumes early retirement 

of all remaining gas appliances in 2045. The transition to all-electric HVAC also has the potential to provide 

cooling for households that do not currently have air conditioning (since heat pumps provide both heat 

and cooling), which could help Californians cope with increasing temperatures due to climate change. 
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Table 2. Building sector assumptions which differ by scenario  

Scenario  Sources of differences among scenario assumptions 

High CDR  
100% sales of electric appliances by 2040, 5% hydrogen in the gas pipeline by 
2045, 12% biomethane in the pipeline by 20457 

Balanced  
100% sales of electric appliances by 2035, 5% hydrogen in the gas pipeline by 
20457 

Zero-Carbon Energy  
100% sales of electric appliances by 2030, with a complete retirement of the 
low-pressure gas distribution system in 2045.  

 

Figure 6 shows how energy demand is met for buildings across the three scenarios in 2045, as well as a 

comparison to 2020 for reference. Note that the “electricity” bar is only showing demand for electricity and 

does not reflect the difference in electricity emissions between scenarios (the High CDR scenario assumes 

95% zero carbon electricity, whereas the other two scenarios assume 100% zero carbon electricity by 2045). 

The reduction in final energy demand in all scenarios in 2045 occurs primarily due to fuel substitution, since 

heat pumps are, on average, 3-4 times more efficient than their gas counterparts. The high building 

efficiency assumptions also contribute to the reduction in final energy demand.   

 
7 Blending up to 7% hydrogen by energy into existing natural gas pipelines is generally considered to be possible without significant upgrades to 
existing gas distribution pipelines (Melaina, 2013). Increasing the hydrogen blend from 5% to 7% in the High CDR and Balanced scenarios would not 
significantly change the study results but should be considered as an update in future scenario analysis.   
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Figure 6. Final energy demand in buildings in 2020, and in 2045 across the three scenarios 

 

Figure 7 shows the emissions resulting from energy consumption in buildings across the three scenarios, 

as well as in 2020 for reference. Non-energy emissions such as those from HFCs are not shown here, but 

rather discussed separately in the non-energy emissions section below. 
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Figure 7: Energy emissions from buildings in 2020, and in 2045 across the three scenarios 

 

2.4.3 TRANSPORTATION 

Most deep decarbonization studies align on the deployment of battery-electric vehicles for passenger 

transport and show varying amounts of reliance on hydrogen fuel cell vehicles for some medium and 

heavy-duty road transport. Overall, deep decarbonization pathways see an important role for 

electrification, hydrogen, biofuels, and synthetic fuels across all parts of transportation, but the mix 

between these energy carriers is still highly uncertain.  

The UK’s Committee on Climate Change “Net Zero UK” study (CCC, 2019), for example, highlights the need 

for all passenger vehicles to be electric by 2050 and the majority of heavy-duty vehicle transportation to 

be either electric or fueled by hydrogen by 2050. Similarly, the EU’s Net Zero study aggregating results 

from 14 decarbonization focused scenarios, show that by 2050, 65% - 90% of the total vehicle stock should 

be zero-emissions vehicles comprised of a combination of mostly battery electric vehicles and hydrogen 
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fuel cell vehicles as well as e-fuels or synthetic fuels and biofuels. The UK’s Net Zero study assumes some 

aircraft to be hybrid-electric by 2040.  

A commonality amongst most decarbonization studies is the focus on decreasing energy consumption 

across all transportation modes. This is projected to take place as a result of adopting carbon fuel 

standards with the deployment of more efficient fuels (e.g. electricity) and engines or fuel cells, as well as 

smart growth. Some amount of behavior change and commuting options made available via shared 

economy solutions also play a key role in reducing energy consumption and are particularly important in 

cities (Carbon Neutral Cities Alliance, 2018). Such measures are expected to significantly reduce total 

vehicle miles travelled (VMT). In the EU’s “Towards Net Zero” study, all scenarios evaluated decrease final 

energy consumption by at least 50% from 2017 levels (Tsiropoulos, Nijs, Tarvydas, & Ruiz, 2020). And in 

the most extreme scenarios, a decline of up to 80% in final energy consumption (excluding international 

aviation and maritime bunker fuels). Driving this decline in energy consumption is the switch from ICEs to 

electric or hydrogen fuel cell vehicles, which results in very significant energy efficiency gain and 

aggressive assumptions on VMT reduction as a result of “smart” growth. 

2.4.3.1 The California Context  

The transportation sector is the largest source of emissions in California, with GHG emissions increasing 

every year between 2013 and 2017. This corresponds with an increase in annual average VMT/capita over 

the same period, although annual emissions rose at a slightly slower rate due to the decreasing carbon 

intensity of transportation fuels in the state and the growing market share for hybrid and battery-electric 

vehicles. While VMT has dropped sharply in the wake of the COVID-19 pandemic, it remains too early to 

predict how quickly VMT will return to pre-pandemic levels, if at all. 

California has enacted multiple policies to support transportation decarbonization. As of mid-2020, the 

state has in place regulations requiring manufacturers to sell an increasing number of zero-emission 

passenger vehicles, medium and heavy-duty trucks, and buses through CARB’s Advanced Clean Cars, 
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Advanced Clean Trucks, and Innovative Clean Transit programs. The existing regulations would see ZEVs 

reach 22% of passenger car sales by 2025, 40% - 75% of medium and heavy-duty truck sales by 2035 

(depending on vehicle class), and 100% of sales for transit buses by 2029. In September 2020, the 

Governor issued Executive Order N-79-20 calling for all light duty vehicles sold in California to be zero-

emission vehicles by 2035, and all medium- and heavy-duty trucks and buses to transition to zero-emission 

by 2045.  

CARB’s Low-Emission Vehicle (LEV) III regulation and Low-Carbon Fuel Standard (LCFS) program are both 

designed to reduce emissions from conventional internal combustion engine vehicles in addition to 

stimulating ZEV adoption. The LEV III regulation includes increasingly stringent greenhouse gas emission 

standards for passenger vehicles through the 2025 model year, while the LCFS program uses a credit 

system to financially incentivize a shift to less carbon intense transportation fuels like biofuels, 

compressed natural gas (CNG), electricity, and hydrogen. 

Federal preemption rules for California provide the state the unique ability to regulate tailpipe emissions, 

but emissions from international shipping and interstate trucking are harder to regulate.  A significant 

fraction of energy consumption associated with interstate and international aviation and shipping are not 

included in the state’s emission inventory and thus are not considered here – but will need to be mitigated 

to achieve national and global emissions reductions.   

2.4.3.2 Scenario Comparison  

Across all scenarios, we assume an increase in fuel economy standards for internal combustion engine 

vehicles (from 45 MPG in 2020 to ~70 MPG in 2045 for passenger vehicles) and a 17% reduction in per 

capita LDV VMT relative to 2020 by 2045. For off-road transportation, we assume that shore power is used 

for 80% of hoteling ships by 2030 and that 70% of harbor craft are electrified by 2045. The use of CNG 

trucks is phased out by 2045 in the Balanced scenario and the Zero Carbon Energy scenario. While a small 

amount of HDV diesel truck sales remain in 2045 in the High CDR and Balanced scenarios, these are meant 
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to represent out-of-state trucks that drive into California to make deliveries and refuel while in the state, 

since the emissions associated with this fuel are included in the state’s greenhouse gas inventory. In the 

Zero Carbon Energy scenario, there is an optimistic assumption that the ZEV transition in HDVs has 

reached a point in surrounding jurisdictions that diesel sales in California are eliminated. For in-state 

trucks, the Balanced scenario assumes a complete transition to hydrogen fuel cell and electric sales by 

2035, while in the Zero Carbon Energy scenario, this transition occurs by 2030.  

Table 3. Transportation sector mitigation measures by scenario  

Scenario  Assumptions 

High CDR 
100% BEV sales for LDV by 2035 

100% BEV sales for MDV by 2040 

45%/48% BEV/CNG sales for HDV by 2040, 7% diesel sales (interstate long-haul) 

50% rail electrification, no aviation electrification 

Balanced  
100% BEV sales for LDV by 2035 

100% BEV sales for MDV by 2035 

45%/48% BEV/HFCV sales for HDV by 2035, 7% diesel sales (interstate long-haul) 

75% rail electrification, no aviation electrification 

Zero-
Carbon 
Energy  

100% BEV sales for LDV by 2030 

100% BEV sales for MDV by 2030 

50%/50% BEV/HFCV sales for HDV by 2030 

75%/25% rail electrification/hydrogen, 50% of in-state aviation electrified 

Figure 8 shows how energy demand is met across the three scenarios in 2045, as well as how demand is 

met today for reference. The significant decrease in energy demand by 2045 occurs because electric 

vehicles are about 3 times more efficient than internal combustion engine vehicles, in terms of source 

energy, and, to a lesser extent, due to assumed reductions in VMT.  
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Figure 8: Final energy demand in transportation in 2020, and in 2045 across the three scenarios 

 

Figure 9 shows the emissions resulting from energy consumption in transportation, both in 2020 and in 

2045 across the three scenarios. Note that emissions associated with electricity consumption are 

included here, whereas in the CARB AB 32 Annual GHG inventory they are accounted for separately. 

Also note that the Zero Carbon Energy scenario achieves a carbon-neutral transportation sector because 

biofuels are assumed to fulfill remaining fossil fuel demands. 

The remaining emissions from transportation in the High CDR and Balanced scenarios can be expected 

to decrease over time post-2045 as the stock share of electric vehicles catches up with the sales share. 

However, both of these scenarios (and in particular the High CDR scenario) include a small amount of 

ongoing demand for liquid and gaseous fuels, as they do not fully reach 100% electric vehicles. 
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Figure 9: Energy emissions from transportation in 2020, and in 2045 across the three scenarios 

 

Figure 10, Figure 11, and Figure 12 show the stocks of LDVs, MDVs, and HDVs over time, respectively, for 

the Balanced Scenario. This scenario represents a widespread transition to zero-emission vehicles for 

the transportation sector, across all vehicle types. The other two scenarios assume a slightly different 

pace of transition, as detailed in the table above, but the story remains similar for these other two 

scenarios. 



 

 
 

P a g e  |  43  | 

 Modeling Approach, Scenario Design and Greenhouse Gas Reduction Strategies 

© 2020 Energy and Environmental Economics, Inc.   

Figure 10: Light Duty Vehicle Stocks in the Balanced Scenario 

 

Figure 11: Medium Duty Vehicle Stocks in the Balanced Scenario 
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Figure 12: Heavy Duty Vehicle Stocks in the Balanced Scenario 

 

2.4.4 INDUSTRY AND AGRICULTURE  

The Industry and Agriculture sectors include manufacturing, cement, oil and gas extraction, petroleum 

refining and fuel use in agriculture processes.  

Across jurisdictions, one of the general uncertainties in the industrial sector is to what degree current 

demand for manufactured goods and refined petroleum products, for example, persist through 2045 

(Tsiropoulos, Nijs, Tarvydas, & Ruiz, 2020).  While some studies expect energy demand in the oil and gas 

sector to decline with the energy transition, other studies assume a global demand for such products will 

continue to exist. Overall, the role of consumers and consumer behavior is important in these underlying 

assumptions. 

In European deep decarbonization studies, the industrial sector reaches widespread electrification 

(around 40-60% in most scenarios), combined with the consumption of hydrogen, biofuels, and CCS. In 
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most scenarios 70% to 100% of the energy use in industry is decarbonized by 2050 (Tsiropoulos, Nijs, 

Tarvydas, & Ruiz, 2020). 

The common challenge in the decarbonization of (heavy) industrial sectors is finding suitable alternatives 

for the application of high temperature heating and process emissions. While electrification is a relatively 

feasible option for manufacturing sectors, more energy-intense sectors such as steel, chemicals and 

cement generally require high temperatures and have process emissions that are not linked to energy 

consumption. Hence, for these industries, strategies relying on electrification or decarbonized fuels are 

either prohibitively expensive, not available or not sufficient in reducing all emissions. Therefore, these 

sectors are either reliant on the application of CCS or on heavy process-related innovations. For instance, 

R&D options in the steel industry exist that produce steel entirely from (carbon free) hydrogen, though 

this process requires a complete transformation of existing facilities (Eurofer, 2050).  California’s industrial 

sector does not include steel production, easing some of the challenges around decarbonization in the 

sector for the state.   

In many European countries, industrial sectors are geographically clustered. This means that they 

currently share common pipelines for natural gas, which have the potential to be converted to dedicated 

hydrogen pipelines. In the Netherlands for instance, a hydrogen roll-out proposal already exists that plans 

to supply hydrogen to industrial sectors through the conversion of one dedicated pipeline that connects 

all industrial sectors (Gasunie, 2020). Moreover, many European industrial sectors have published sectoral 

studies that lay out the potential pathways towards decarbonization in 2050. Apart from technological 

challenges, these studies stress the importance of a global level playing field in implementing carbon-

reduction measures (Eurofer, 2050) (Cefic, 2013) (Cembureau, 2020).  

In the agricultural sector, uncertainties exist around technology developments related to land use 

practices, fertilizers, indoor cultivation, etc. As the agricultural sector’s largest emissions are methane and 

nitrous oxide, the biggest challenges in this sector are non-energy related.  
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2.4.4.1 The California Context  

Industry is a large source of emissions in California relative to other states and parts of Europe that have 

committed to carbon neutral goals. Agriculture, oil & gas extraction, and petroleum refining are all sectors 

with significant energy demands and emissions in the state—California produces more agricultural 

products than any other state and is the seventh largest oil producing state in the country, according to 

the US EIA.  

The geology of California’s Central Valley is suitable to carbon storage, meaning CCS for some industrial 

processes is feasible, such as cement production and process heating. 

Oil and gas extraction and petroleum refining are currently the largest sources of industrial emissions. 

However, the role of these industries in a carbon-neutral future is uncertain, particularly if California’s oil 

and gas demand were to decline significantly due to reduced demand. 

2.4.4.2 Scenario Comparison  

In all scenarios, biofuels are used to fulfill liquid fuel demands that are remaining after other 

decarbonization strategies (mainly in agriculture and off-road equipment). An unspecified 10% reduction 

in demand due to energy efficiency is assumed for all fuels in industrial and agriculture energy use, 

consistent with estimates of the achievable potential of energy efficiency in these sectors across a variety 

of strategies, including more efficient motors, lighting, and process heating improvements. CCS is assumed 

to be applied in the cement, glass, and primary metal subsectors in all scenarios. 

In the High CDR scenario, no additional GHG reduction measures are applied in the industrial and 

agriculture sectors, beyond the 12% biomethane and 5% hydrogen blends in the natural gas pipeline that 

serve all sectors (see Table 1), and the CCS in certain sectors mentioned above. In the Balanced and Zero-
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Carbon Energy scenarios, additional GHG reduction measures are applied in the manufacturing sector, as 

described below.  

The manufacturing sector in California is comprised of a wide array of industries with highly diverse 

production processes and energy demands. Because of this, we include a mix of industry decarbonization 

technologies in our Balanced and Zero-Carbon Energy scenarios that includes electrification, direct 

hydrogen combustion delivered through dedicated hydrogen pipelines and blended into existing natural 

gas pipelines, liquid biofuels, and CCS. We assigned these decarbonization technologies to certain industry 

subsectors and end-uses based on high level assumptions of their relative feasibility, with the 

understanding that there is a high degree of uncertainty around which technologies will be the lowest 

cost options in 2045. 

Due to the high cost of replacing conventional gas-fired boilers with electric resistance boilers, we chose 

to replace natural gas with direct hydrogen combustion for conventional boilers, assuming dedicated 

hydrogen pipelines to industrial facilities, which are able to deliver 100% blends of hydrogen. For process 

heating, we assumed CCS would be adopted for cement, glass, and primary metal manufacturing, as these 

subsectors have many characteristics that would lead to CCS being a relatively low cost decarbonization 

option (e.g. large plant size, high temperature heat requirement, high annual CO2 throughput, and/or 

significant process emissions). We assumed that the remaining process heat in industries with lower 

temperature heating requirements would be met with electric heating technologies. Direct hydrogen 

combustion, at 100% hydrogen blends using dedicated hydrogen delivery pipelines, could also be a 

suitable decarbonization option for many process heating applications and may be more cost effective 

than electrification or CCS, but this was not examined in depth as part of this analysis. Finally, energy 

demand for the “Other” end-use, which encompasses all industrial end uses that do not fall into categories 

specified in Table 4 as well as some off-road transportation fuel demand,  was assumed to be evenly split 

between CCS, electricity, and hydrogen, with a small amount of renewable diesel to replace some of the 

existing diesel consumption for that end-use.  
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Table 4. Share of final energy demand by end use for the industrial manufacturing sector in the Balanced 
and Zero Carbon Energy scenarios in 2045  

End-Use Renewable Diesel Natural Gas with CCS Electricity Hydrogen 

Conventional Boiler Use 0% 0% 0% 100% 

Lighting 0% 0% 100% 0% 

HVAC 0% 0% 100% 0% 

Machine Drive 0% 0% 100% 0% 

Process Heating 0% 53% 47% 0% 

Process Cooling & Refrigeration 0% 0% 100% 0% 

Other 7% 31% 31% 31% 

 



 

 
 

P a g e  |  49  | 

 Modeling Approach, Scenario Design and Greenhouse Gas Reduction Strategies 

© 2020 Energy and Environmental Economics, Inc.   

Table 5. Scenario-specific assumptions for the industry manufacturing, agriculture, and oil & gas 
extraction / petroleum refining sectors in 2045 across the three scenarios 

Scenario  Assumptions 

High CDR  
CCS applied in the cement, glass, and primary metal subsectors, no incremental industry 
electrification, no dedicated hydrogen pipelines 

~80% reduction in energy emissions from agriculture (mainly due to electricity decarbonization; 
renewable diesel used to fulfill diesel demand) 

90% reduction in energy demand from oil & gas extraction and petroleum refining due to 
decreased demand for fossil fuels 

Balanced  
High industry electrification, direct hydrogen combustion via dedicated H2 pipelines, 
and CCS applied in the cement, glass, and primary metal subsectors (see above table) 

~100% reduction in energy emissions from agriculture (remaining diesel demand is 
transitioned to electricity) 

90% reduction in energy demand from oil & gas extraction and petroleum refining 
due to decreased demand for fossil fuels 

Zero-Carbon 
Energy  

High industry electrification, direct hydrogen combustion via dedicated H2 pipelines, 
and CCS applied in the cement, glass, and primary metal subsectors (see above table) 

100% reduction in energy emissions from agriculture (remaining diesel demand is 
transitioned to electricity) 

100% reduction in energy demand from oil & gas extraction and petroleum refining 
due to zero remaining liquid fossil fuel demand due to eliminated demand for fossil 
fuels 

 Figure 13, Figure 14, and Figure 15 show how energy demand in the Industry, Agriculture, and Oil & Gas  

sectors is met in 2020, as well as in 2045 across the three scenarios. 



 
 

 

 Achieving Carbon Neutrality in California  

P a g e  |  50  | 

Figure 13: Final energy demand in Industry in 2020, and in 2045 across the three scenarios 

 
Figure 14: Final energy demand in Agriculture in 2020, and in 2045 across the three scenarios 

 
Figure 15: Final energy demand in Petroleum Refining and Oil & Gas Extraction in 2020, and in 2045 

across the three scenarios 
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Figure 16, Figure 17, and Figure 18 show the energy and process emissions from the Industry, Agriculture, 

and Oil & Gas sectors in 2020, as well as in 2045 across the three scenarios. “Other” refers mainly to 

petroleum coke, as well as refinery & process gas. Also shown here are the emissions that are abated with 

CCS. 
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Figure 16: Energy and process emissions in Industry in 2020, and in 2045 across the three scenarios 

 

Figure 17: Energy emissions from Agriculture in 2020, and in 2045 across the three scenarios 

 

Figure 18: Energy emissions from Petroleum Refining and Oil & Gas Extraction in 2020, and in 2045 across 
the three scenarios 
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2.4.5 ELECTRICITY  

Pairing electrification of vehicles and buildings with high amounts of renewable energy generation are 

often considered the “low hanging fruit” of decarbonization due to their near- and long-term economic 

benefits. Electrification provides significant gains in energy efficiency across those sectors and shifts the 

decarbonization of these sectors to that of the electricity sector. Furthermore, recent and continuing 

declines in the cost of solar, wind and battery storage resources mean that these resources can be lower 

cost than fossil-based thermal resources, up to a point.  

Decarbonization of the electricity sector has been well underway over the past decade with significant 

adoption of renewables in California, the US, and across the globe (IRENA, 2019). In 2018, over 60% of 

global new energy capacity was from renewables, mainly solar and wind. Total energy share from 

renewables remains small at 15% (EIA, 2019) (of which about half is from hydro power), but this is 

projected to grow while generation from thermal resources, particularly coal, is projected to decline over 

the next decades.  

Pathways developed to meet deep decarbonization targets by mid-century typically include a significant 

reliance on renewables, such as, solar, onshore and offshore wind, complemented by some form of firm 

capacity (Ming, Olson, De Moor, Jiang, & Schlag, 2019), (Sepulveda, 2018).  The exact resource mix that 

will provide cost-effective decarbonized electricity generation will vary based on geography, resource 

availability and technological advancements.  

The European Commission consolidated 14 energy scenarios that achieve net-zero or near zero emissions 

by mid-century and 9 of 14 relied on over 50% of generation from wind and solar resources and up to 85% 

of generation in some scenarios. Hydrogen and bioenergy also play a significant role in providing zero 

emissions electricity generation for scenarios with very high levels of electrification.  
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Regional limitations and political appetite are likely to influence differences in decarbonization pathways 

that may include future developments of long-duration energy storage, hydrogen, advanced nuclear and 

CCS technologies. There is a general agreement that some form of firm, zero-carbon capacity is needed 

to complement large increases in renewable generation, as well as regional transmission where feasible. 

Large-scale renewable resource deployment also requires significant land use. One MW of utility-scale 

solar photovoltaics requires approximately 7 acres of land, while 1 MW of onshore wind requires up 2 

acres of land cover for the turbine, but will impact up to 140 acres of land, which can be used for 

agriculture purposes, but not for buildings or other densely populated activities (NREL, 2017).  

2.4.5.1 The California Context  

California’s electricity sector is on a path to adopting significant amounts of renewable generation 

including solar, wind, geothermal, biomass and small hydro. These already make up about 31% of the 

state’s total power generation in 2018 (CEC, 2019). Senate Bill 100 (SB 100), passed in 2019, targets at 

least 60% renewable energy generation by 2030 and 100% of electric retail sales to be met by renewable 

resources and other zero carbon resources by 2045.  

California’s abundant and high-quality solar energy resource, access to geothermal energy and potential 

for offshore wind or importing wind from other states to the east8 makes renewable resource adoption a 

particularly attractive decarbonization strategy for electricity. Studies focusing on California’s electricity 

sector decarbonization have shown that in order to meet its climate goals, the state will be increasingly 

reliant on variable renewables, in particular solar and wind with a limited amount of geothermal energy 

(about 80% of total generation) and significant amounts of energy storage to balance these resources 

(Ming, Olson, De Moor, Jiang, & Schlag, 2019). Electricity sector studies have also shown the notable value 

 
8 This refers to Wyoming, Montana and New Mexico wind, for example. 
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of offshore wind to provide least cost electricity generation in California in the next 10 to 20 years while 

meeting these goals (E3, 2019).  

While renewable energy generation can displace the majority of emissions in the electric sector, these 

studies have shown that, due to reliability concerns, some form of dispatchable generation also referred 

to as “firm capacity” is needed to maintain system reliability. Some of this firm capacity can be provided 

by geothermal energy but economic access to large amounts of geothermal energy is expected to be quite 

limited. Biofuels such as biomethane can displace remaining emissions from gas generation as a low or 

zero carbon dispatchable fuel, at an incremental cost, while fulfilling the firm capacity need. However, 

biomass for biofuels is needed across all sectors to meet decarbonization goals, and its availability in 2045 

may be limited. In addition to biomethane, other zero carbon fuels like hydrogen or synthetic natural gas 

could be burned in new or existing turbines to provide firm capacity to the grid. 

Other potentially promising options exist that can meet the need for firm capacity (or dispatchable 

generation). These include, but are not limited to, long-duration energy storage (Spector, 2020), gas with 

CCS, and advanced nuclear power technologies such as small modular reactors and molten salt reactors. 

However, the development of such dispatchable generation options and fuel production processes 

remains uncertain and has yet to be demonstrated at commercial scale. Furthermore, California has 

prohibited the development of new nuclear facilities absent the existence of a federal nuclear waste 

repository. Thus, advanced nuclear technologies, while potentially promising as a zero-carbon resource, 

are not assumed in this study.  

2.4.5.2 Scenario Comparison 

In the context of achieving net zero gross emissions, the scenarios developed in this study reflect similar 

electricity sector results to those developed in other California studies. Figure 19 highlights the total 

amount of electric load in 2045 and its allocation by sector, the bulk of which is attributed to building 

energy consumption. Electricity use for fuel production highlighted in Figure 19 refers to liquid hydrogen 
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fuel production used in transportation. All other non-transportation sector hydrogen (e.g. hydrogen used 

in industry, electric generation or blended into the gas distribution pipeline) is assumed to be produced 

using off-grid renewable electricity, as a means of producing low-cost renewable hydrogen that can take 

advantage of high capacity factor renewables, and so does not show up here as a grid-connected electric 

load.  

Figure 19: Electricity loads by category in 2020 and in all three scenarios in 2045 

 

Levels of electrification by scenario increase in the following order: High CDR, Balanced and Zero Carbon 

Energy. Figure 20 highlights that, across all scenarios, there is a heavy reliance on variable renewables, 

amounting to at least 80% of total generation. The remaining generation across all scenarios, 15-20%, are 

from a combination of large hydro resources (including imports), some geothermal capacity and some 

form of dispatchable gas. Depending on the scenario, the dispatchable gas used is either fossil based, i.e. 

natural gas (High CDR scenario) or biomass based i.e. biomethane (Balanced and Zero Carbon Energy 

scenarios). In the absence of other technologies highlighted in the previous section, the firm capacity need 

is met by a combination of geothermal and dispatchable gas generation. Here, dispatchable biomethane 

enables the Balanced and Zero Carbon Energy scenarios to achieve zero emissions electricity generation, 

while the High CDR scenario still has 10 million metric tons of CO2 emitted from natural gas generation in 
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2045. All scenarios comply with SB 100 providing at least 100% of electricity retail sales with zero carbon 

resources, which reflects at least 95% of generation from zero emissions resources.  

Figure 20 shows the resources used to generate electricity in 2020, as well as in all scenarios in 2045. The 

generation figures shown below do not include curtailed renewables9,  but do include exports. In these 

scenarios, on-grid hydrogen production is an electric load which increases the total demand for renewable 

electricity and may also be used to reduce renewable curtailment.  

Figure 20: Electricity Generation by Resource in 2020 and in all three scenarios in 2045 

 

Figure 19 similarly shows the electric loads by category in 2020 and in 2045 across scenarios, while Figure 

21 shows electric loads over time for the Balanced scenario. The “fuel production” loads, shown in Figure 

19, are associated with on-grid hydrogen production using electrolysis, for use in hydrogen fuel cell 

vehicles. Note that hydrogen for industry and hydrogen blended into the gas pipeline is assumed to be 

produced with off-grid, dedicated renewable resources (or out of state renewables), and so does not 

 
9 The PATHWAYS model does not generate a precise estimate of renewable curtailment due to the limitations in the modeling framework.  A more 
detailed electricity sector model, such as RESOLVE, would be needed to more accurately estimate renewable curtailment in a high renewables future.   
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appear in the in-state electricity demand numbers. This additional off-grid electric load for hydrogen 

production is equal to about 90 TWh in 2045 in the Balanced and Zero Carbon Energy scenarios. 

Likewise, the electric loads associated with any direct air capture (DAC) are assumed to occur either off-

grid, or out-of-state. It is important to note that the loads for DAC in particular could be significant, as DAC 

requires about ~500 MW of nameplate solar capacity for every MMT of CO2 captured annually (thus, even 

the Zero Carbon Energy scenario would require about 15 GW of additional solar buildout, if all CDR in this 

scenario was achieved through DAC powered by solar).  

Figure 21: Electricity loads by category in the Balanced scenario 

 

2.4.6 HIGH GLOBAL WARMING POTENTIAL GASES AND NON-COMBUSTION GREENHOUSE 
GAS EMISSIONS  

Non-combustion emissions were responsible for about 15% of total emissions in California in 2017. Non-

combustion emissions in California include F-gases (mainly refrigerants), methane emissions from 

agriculture and waste, methane leakage from oil & gas production and distribution, as well as other 

smaller categories. These emissions are particularly difficult to abate, given that F-gas emissions are 

projected to increase in the absence of new regulations, and given that some emissions sources (i.e. 
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enteric fermentation) are currently difficult to impossible to eliminate completely. The challenges and 

opportunities for abatement of each type of non-combustion emissions are detailed further in the 

sections below. 

2.4.6.1 F-gases 

F-gases consist primarily of hydrofluorocarbons (HFCs), and are used in refrigerants, aerosols, and foams. 

HFCs were introduced as replacements to ozone-depleting chlorofluorocarbons (CFCs), which are being 

phased out under the Montreal Protocol. Both HFCs and CFCs have a very high global warming potential 

(GWP), often in the range of 2,000 on a 100-yr basis10, which means that reducing these gases is an 

important part of any GHG reduction strategy. 

Emissions from HFCs are particularly difficult to mitigate, since many low-GWP refrigerant options are not 

yet commercialized or have yet-to-be-addressed implementation issues such as flammability. Of note, 

emissions from CFCs are not included in GHG inventories by international convention, as CFCs are already 

being addressed by the Montreal Protocol. This second point means that, as older CFC-containing 

appliances are replaced with newer HFC-containing appliances, the emissions from F-gases included in 

California’s GHG inventory are going up over time. Thus, F-gases have an increasing baseline against which 

any reductions must be estimated. 

In 2016, the U.S. committed to reducing F-gas emissions under the Kigali Amendment to the Montreal 

Protocol. However, whether the U.S. will follow through with these commitments remains to be seen. 

Analysis by CARB indicated that, while following through with the Kigali Amendment would help California 

meet its HFC reduction goals, the reductions required by this agreement alone would not be sufficient to 

allow California to meet its 2030 goal of a 40% reduction, relative to 2013 levels, as required by SB 1383 

 
10 GWP refers to the potency of a greenhouse gas relative to CO2. If a substance has a 100-year GWP of 2,000, this means that the substance produces 
2,000 times the warming effect of CO2 on a mass basis, over a period of 100 years. 
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(Research Division of the California Air Resources Board, 2017). Additional f-gas reduction measures 

would be required.   

2.4.6.2 Methane from Livestock and Waste 

Biogenic methane emissions from the decomposition of animal waste, food waste, and wastewater 

represent another difficult-to-mitigate source of GHG emissions, but if these sources are diverted for 

anaerobic digestion, or if their emitted methane is captured, they represent a potential source of 

biomethane. Enteric fermentation (emissions from the digestion of ruminant animals such as cattle) is 

another significant source of methane that is difficult to fully mitigate as long as there is animal husbandry 

in the state. 

2.4.6.3 Fugitive Methane Emissions 

Methane, the primary component of natural gas, is an important high GWP gas, with a 100-year GWP of 

25. Leaking natural gas causes significantly more global warming compared to burning it, although this 

difference, using the 100-year GWP, is a factor of 9 rather than 25 as the GWP would intuitively imply11. 

Methane is emitted across all parts of the natural gas supply chain, and in particular during exploration, 

production, and processing. Most of the methane emissions associated with California’s natural gas 

consumption occur out-of-state, since California imports about 95% of its natural gas, and are thus not 

included in the state’s GHG inventory. However, there is still a significant amount of methane emitted in-

state, from oil & gas extraction and natural gas transmission and distribution, which is included in the 

 
11 Leaking methane as opposed to burning it has a 9x greater impact on global warming, rather than 25x, because each ton of methane that is burned 
emits 2.7 tons of CO2. Therefore, leaking methane instead of burning it increases the total GHGs emitted by a factor of 25/2.7 = 9. The more technical 
description of this effect is that methane has a mass-based GWP of 25, but a molar GWP of 9 (i.e. one ton of methane has the same global warming 
impact as 25 tons of CO2, but one molecule of methane has the same global warming impact as 9 molecules of CO2). 



 

 
 

P a g e  |  61  | 

 Modeling Approach, Scenario Design and Greenhouse Gas Reduction Strategies 

© 2020 Energy and Environmental Economics, Inc.   

state’s inventory. Reducing methane leaks, as well as methane consumption overall, are both important 

strategies to reduce GHG emissions.   

2.4.6.4 Other Industrial and Agricultural Sources 

Other non-combustion GHG emissions included this report are: CO2 released during the production of 

cement (included in the Industry sector, for the purposes of this report), nitrous oxide resulting from the 

application of fertilizer, and methane produced in flooded fields associated with rice agriculture. Some 

options exist for mitigating these emissions and are included in all scenarios, such as substituting fly ash 

for Portland cement used in making concrete, and increased efficiency in fertilizer application. However, 

the mitigation potential in these categories is expected to be relatively limited compared to other GHG 

emissions. 

2.4.6.5 The California Context  

Non-combustion emissions represent a significant fraction of California’s total GHG emissions (about 15% 

in 2017), due in no small part to the state’s large agricultural sector. California has taken significant steps 

to date to reduce non-combustion emissions. The state has a goal of reducing methane and HFC emissions 

by 40% below 2013 levels by 2030, as mandated by SB 1383. The California Air Resources Board has 

outlined a strategy, the “Short Lived Climate Pollutant (SLCP) Reduction Strategy,” for meeting these 

goals. 

2.4.6.6 Scenario Comparison  

All scenarios in this study assume a ~40% reduction in methane emissions and a ~75% reduction in HFC 

emissions by 2045 relative to 2017 levels, in line with previous E3 decarbonization scenarios (Mahone, 

2018); (Aas, 2020). These reductions match CARB’s SLCP Reduction Strategy for 2030 and go beyond the 

SLCP Strategy past 2030, in the case of HFCs. All scenarios include a transition away from HFCs in most 
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applications by 205012. The HFC reductions are ambitious and would only be possible through the 

widespread use of lower-GWP refrigerants across all applications. In contrast, the methane reduction 

assumptions may be conservative, particularly if higher capture rates of methane are achievable through 

deployment of emerging technologies in dairy and other agricultural processes.13 Even with these 

aggressive measures, there are still 30-34 MMT CO2e of non-combustion emissions remaining in our 

scenarios in 2045. The Zero Carbon Energy scenario assumes a complete phase-out of petroleum refining, 

oil & gas extraction, and the low-pressure natural gas distribution grid, meaning that non-energy 

emissions are slightly lower in this scenario, since fugitive methane emissions from these sources are 

reduced. 

 
12 HFC emissions in PATHWAYS are not explicitly tied to an increasing penetration of heat pumps, because a transition away from HFCs in most 
applications is assumed in all mitigation scenarios. Furthermore, electrification on its own is not expected to significantly increase the amount of HFC 
emissions in the state, since most heat pumps will replace air conditioners that use the same refrigerants. Thus, any increase in refrigerant emissions 
is expected to be due to heat pump water heaters (which use much less refrigerant than air source heat pumps), heat pump clothes dryers (which 
also use very little refrigerant), and to the installation of heat pumps in homes that did not previously have air conditioning.  
13 Included in the 40% reduction in total methane emissions by 2045 is a 70% reduction in methane leakage from in-state natural gas distribution 
pipelines in the High CDR and Balanced scenarios. The Zero Carbon Energy scenario assumes that natural gas leakage in the gas distribution pipeline 
is 100% mitigated by 2045. 
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Figure 22: Non-energy emissions by category in 2020, and in 2045 across the three scenarios 

 

2.4.7 CARBON DIOXIDE REMOVAL 

The need for carbon dioxide removal was introduced in the IPCC’s Fourth Assessment report, highlighting 

that, in order to reach stable levels of temperature rise, the amount of anthropogenic carbon dioxide 

emissions need to be lower than or equal to natural anthropogenic carbon sinks by 2100 or “net zero”. 

The IPCC 2018 report on 1.5°C then highlighted the need to achieve net zero emissions earlier, by 2050, 

due to the risk and impacts of reaching 2°C of warming. However, solutions to mitigate all economy-wide 

emissions by mid-century, including hard to abate sectors such as agriculture and aviation, are not 

expected to be economic or technologically realized by 2050. Hence, the scenarios presented by the IPCC 

highlight that limiting global warming to 1.5°C is likely to require CDR to remove 10-100 billion metric tons 

of CO2 globally and over the course of the 21st century.  

Similarly, regional decarbonization studies have also highlighted the need for CDR to achieve net zero 

emissions. The National Academy of Sciences produced a report in 2018 summarizing the state of CDR 
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options (National Academies of Sciences, Engineering, and Medicine, 2019)14. These are, broadly, two 

categories of CDR:  

 Land-based solutions 

 Negative emissions technologies or NETs 

Land-based solutions typically include land use and management practices such as afforestation and 

reforestation, changes in forest management and changes in agricultural practices to increase carbon 

dioxide intake also known as soil carbon sequestration. Other land-based solutions, categorized as 

“coastal blue carbon” focus on increasing the carbon dioxide intake of living plants, tidal marshlands, and 

other tidal wetlands. The resource potential for these solutions is challenging to quantify but ultimately is 

limited by land availability and the ability to implement improved land management practices. The 

National Academy of Sciences study estimates that land-based solutions at below $100/tCO2 removed 

could achieve up to about 500 million metric tons CO2e removal per year, while globally the potential 

could reach close to 6 billion metric tons CO2e removed per year. A UK Royal Society study published in 

2018 focusing on Greenhouse Gas Removal concluded that the potential for such land-based solutions 

could remove 60 billion metric tons of CO2 per year (Royal Society, 2018).   As previously discussed, E3’s 

California-focused study does not include land-based carbon sinks or sources within the scenarios 

modeled.  

Negative emissions technologies include: 

 Bioenergy with CCS (BECCS) whereby biomass is combusted or gasified to produce a fuel or 

electricity and the CO2 that emitted is captured and sequestered in deep geological reservoirs.  

 
14 Negative Emissions Technologies and Reliable Sequestration, National Academy of Science, 2018 



 

 
 

P a g e  |  65  | 

 Modeling Approach, Scenario Design and Greenhouse Gas Reduction Strategies 

© 2020 Energy and Environmental Economics, Inc.   

 Direct air capture (DAC) with CCS, whereby chemical processes are used to capture CO2 from 

ambient air and coupled with carbon sequestration in geological reservoirs. This last step is critical 

for both DAC with CCS and BECCS to produce negative emissions.  

 Carbon mineralization, also referred to as “enhanced weathering,” whereby CO2 forms a very 

strong chemical bond with reactive minerals. The cost and potential for this technology remains 

speculative and it is unclear that this option would be available at large scale by mid-century.  

The focus and research around CDR options has grown significantly over the past 10 years with large 

bodies of research and funding focusing on these options (Minx, Fuss, & Nemet, 2018). Today it is still 

unknown which strain of these solutions will be most cost-effective by mid-century. However, there is a 

consensus on the need to maximize the use of existing land use and management solutions to remove as 

much carbon dioxide as possible, which will vary in potential by region. Negative emissions technologies 

such as BECCS and DAC with CCS (also known as DACCS) are also expected to become viable options in 

the 2040-2050-time frame. In this study, the focus is not on any specific CDR option, but instead on 

highlighting the scale of the need for CDR to meet net zero emissions by 2045.   

2.4.7.1 The California Context  

NETs, such as BECCS and DACCS in California could potentially play a key role in removing unabated carbon 

emissions, though these also face constraints. The potential for BECCS is limited by the availability of 

biomass in California, while DAC with CCS is limited only by available, non-productive, or protected land. 

Both are limited by the potential for geological carbon sequestration in the state, of which there is an 

estimated 5 GtCO2e in the largest oil & gas basins in California and an estimated 30-420 GtCO2e of storage 

potential estimated in saline aquifers, though the saline aquifers in the state have limited characterization 
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and actual storage capacity could be substantially lower (WESTCARB 2010)15. Table 6 highlights the 

amount of CDR that each scenario relies on to mitigate remaining gross emissions.  

Table 6: Carbon Dioxide Removal Estimated by Scenario 

Scenario Carbon Dioxide Removal Need 
(MtCO2e/year) 

High CDR 80 

Balanced 56 

Zero-Carbon Energy 33 

 
15 The majority of these reservoirs, saline aquifers and depleted oil and gas reservoirs, are located in the Central Valley (Sacramento Basin and San 
Joaquin Valley) with some offshore sequestration potential in depleted oil fields in the Los Angeles basin. 
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3 Discussion of Key Findings  

3.1 Scenario Comparison Across Key Metrics  

As presented in the previous section, all three scenarios presented in this study achieve net zero emissions 

across all sectors of the economy, excluding sources from natural and working lands. This is achieved 

through a combination of measures including large amounts of energy efficiency, fuel switching, including 

substantial amounts of electrification, and decreasing fuel emissions intensity. A combination of these 

measures allows for all three scenarios presented to achieve at least 80% GHG reduction by 2045 from 

1990 levels. Advanced mitigation measures and carbon dioxide removal (outlined in Table 7) are assumed 

to displace all remaining emissions to achieve net zero emissions, as defined here, by 2045. In this analysis 

the relative impact of each scenario is evaluated against the following risk factors and highlighted in Figure 

23:  

 Implied health impacts from criteria pollutants - estimated based on the total amount of fuel 

combustion, 

 Climate change mitigation risk – as measured by gross emissions levels, and  

 Technological adoption and implementation risk.  
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Figure 23. Relative comparison across key risk factors  

 

Evaluating each scenario across these key risk factors, as highlighted in Figure 23, shows the relative 

benefit of the Balanced scenario with a mid-level impact on each of these criteria. These key risk factors 

and their scoring by scenario is discussed in further detail in subsequent sections.  

The relative energy system costs, based on the suite of measures adopted, including the amount of CDR 

required to achieve net zero emissions in each scenario, is too uncertain to deem one scenario more or 

less expensive than another. However, the cost of carbon abatement ($/metric ton) estimated ranges for 

each of these advanced mitigation measures and CDR options considered are presented in Figure 25.  

3.2 Fuel Combustion: Implications for Air Quality and Health 
Considerations  

Recent research has highlighted the impact of fuel combustion on air quality, both indoor and outdoor, 

and the resulting negative health impacts (Seals & Krasner, 2020) (Aas, 2020), (EPRI, 2019 ). Climate 

change, local air quality, and the associated health impacts, have a disproportionate impact in low-income 

and disadvantaged communities, meaning that air quality is an important part of environmental justice 
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and equity  (Perera, 2017), (Gridworks, 2019). While the analysis presented in this study does not include 

a detailed air quality assessment, Figure 24 highlights the substantial decrease in fuel combustion from 

2020 to 2045 across all three scenarios: 71% decrease in the High CDR scenario, 79% decrease in the 

Balanced scenario and 87% decrease in the Zero Carbon Energy scenario from 2020. Hence, the 2045 

scenarios will see significant improvements in air quality, including improvements in indoor air quality 

with the electrification of most building end-uses. In all three scenarios, over 60% of the fuel combustion 

still taking place in 2045 is of methane (fossil natural gas, synthetic natural gas, or biomethane) which has 

a lower impact on air pollution than liquid fuels (Union of Concerned Scientists, 2014).These impacts are 

viewed here on a statewide level, while local health benefits within specific communities will depend on 

local fuel combustion.  

Figure 24: Total fuel combustion by scenario 
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3.3 Climate Change Mitigation Risk 

Reducing emissions as early as possible can have a significant impact on minimizing climate risk and can 

help avoid a temperature “overshoot” (IPCC 2018). Furthermore, achieving carbon neutrality will require 

a comprehensive evaluation of all anthropogenic and natural carbon dioxide sources, which implies that 

minimizing gross emissions can help improve the chances of achieving carbon neutrality. Minimizing 

energy-sector GHG emissions and moving away from the use of high GWP gases will also limit the reliance 

on CDR options that may be needed to further mitigate natural carbon sources.   

The Zero Carbon Energy scenario is estimated here as having the lowest climate change mitigation risk 

because it has the lowest cumulative GHG emissions among the three scenarios. The Zero Carbon 

Energy scenario achieves a 45% reduction in gross emissions in 2030, as opposed to a 40% reduction in 

the other two scenarios, as well as the lowest gross emissions by 2045. The Balanced and High CDR 

scenarios follow in their levels of climate change mitigation risk, “Mid” and “Highest” respectively. The 

High CDR scenario has the highest climate change mitigation risk due to its large reliance on CDR and 80 

MMT of gross emissions remaining in 2045. Table 6 provides the estimated gross emissions remaining in 

each scenario. 

3.4 Technology Adoption & Implementation Risk  

All three scenarios presented in this report require aggressive measures to achieve carbon neutrality, and 

there are technology adoption and implementation risks inherent to each of the decarbonization 

pathways examined. All scenarios require a rapid buildout of a statewide EV charging network, and all 

scenarios see a significant reduction in use of the low-pressure, retail natural gas distribution system (with 

a complete phase-out of gas use in buildings in the Zero Carbon Energy scenario).  The infrastructure 

planning and implications of both of these transitions are monumental. Further, these scenarios assume, 
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to varying degrees, the creation of a dedicated production and distribution network for green hydrogen 

prior to 2045. 

The High CDR scenario is consistent with previous E3 80x50 scenarios for many sectors but relies heavily 

on the development of CDR, which carries the risk of being unable to deploy NETs, such as direct air 

capture at scale, and land management strategies, whose potential is still being determined. According to 

the IEA, there are currently 15 DAC plants worldwide that capture 0.9 million metric tons of carbon dioxide 

annually, while the High CDR scenario requires the sequestration of 80 million metric tons (MMT) of 

carbon dioxide annually by 2045 for California alone. Furthermore, the energy required by this process 

must be supplied either by on-grid or off-grid renewables, which would be equivalent to over 100 TWh of 

electricity demand, with large associated land use requirements.   

Although the Zero Carbon Energy scenario relies less heavily on NETs, it requires the deployment of 

electrified and hydrogen-powered technologies on an even more aggressive timeline than in previous 

80x50 scenarios. To reach aggressive targets like 100% ZEV sales for passenger vehicles by 2030 or 2035, 

new legislation and/or policy incentives will be needed, and these carry political risk. Even with supporting 

policies in place, there is an implementation risk to actually transitioning all forms of fossil fuel 

consumption to zero carbon energy in under three decades. The ZCE Scenario requires replacing almost 

every fossil fuel vehicle, building appliance, and piece of industrial equipment in California with a device 

that is powered by electricity or hydrogen by 2045. Finally, the ZCE scenario relies on further 

decarbonizing the energy supply for sectors like interstate trucking, rail, and aviation that are not entirely 

under the direct regulatory authority of California state agencies. 

The Balanced scenario was designed to incorporate both aggressive supply-side decarbonization and 

widespread deployment of NETs while mitigating the risk of relying too heavily on either. Many of the 

fuel-switching measures present in the ZCE scenario are also achieved in the Balanced scenario, but at a 

slower pace, while the most speculative or expensive measures are omitted (e.g. aviation electrification, 
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synthetic natural gas blend in the pipeline). In addition, the Balanced scenario only requires 56 MMT of 

atmospheric CO2e to be sequestered to reach carbon neutrality, 24 MMT less than the High CDR scenario. 

Table 7 summarizes some of the key implementation and adoption challenges involved with each of the 

advanced mitigation measures and NETs that are considered for the scenarios to go beyond 80x50 and 

achieve net zero emissions in the energy sector.  

Table 7: Implementation and adoption challenges of key advanced mitigation and CDR measures 
considered in this study 

Mitigation 
Measure 

Implementation & Adoption Challenges 

MDV & HDV 
Electrification  

Requires establishment of a state-wide charging network that will likely necessitate 
transmission and distribution system upgrades. 

Hydrogen Fuel 
Cells for HDV 

Requires substantial state-wide infrastructure for hydrogen refueling and maintenance. 

Industry CCS Relies on the adjustment of the industrial process to accommodate a CO2 capture plant and 
development of a CO2 transport system and storage site either within the state or out of 
state. 

Industry 
Electrification 

Technically unsuitable for some applications (e.g. cement kilns) and costly for others (e.g. 
resistance boilers). Limited to its application to industries that have relatively low heating 
demands and can see significant efficiency benefits through electrification.  

Building 
Electrification 

Requires changes to the building code, appliance codes and standards, electrical distribution 
upgrades, electrical panel upgrades, as well as consumer adoption decisions and contractor 
education and awareness of electric heat pump technologies. 
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Mitigation 
Measure 

Implementation & Adoption Challenges 

Green Hydrogen 
Fuel 

Relies on the large-scale development of electrolysis and a significant renewable energy 
source to power the process. Hydrogen storage is also likely to be required to close the gap 
between supply and demand.  

Zero Carbon 
Electricity 
Generation 

Relies on dispatchable zero-carbon resources that either have limited potential (geothermal, 
biomethane) or have not yet been deployed at scale (e.g. natural gas with CCS, hydrogen 
combustion turbines).  

Direct air capture 
with CCS 

Requires a substantial amount of energy use to power the direct air capture process; If 
powered by off-grid solar this requires about 700 MW of solar PV per MMT removed and a 
significant amount of land for both the DAC process and energy needs (about 1,700 acres for 
DAC and 4,900 acres for solar PV to remove 1 MMT) (National Academies of Sciences, 
Engineering, and Medicine, 2019) (NREL, 2017). If powered by the grid, this will add 
significant amounts of load.16 Also relies on the development of a CO2 transport and storage 
system large enough to accommodate gross emissions reduction in 2045.  

Bioenergy with 
CCS 

Potential is limited by biomass availability and competing uses for biofuels and also relies on 
the CO2 transport and storage infrastructure. It is also important to note that all scenarios in 
this study utilize all of the waste biomass considered to be available to California, for liquid 
and gaseous fuel production. If some of this biomass were diverted to other uses, such as 
biomass gasification to hydrogen with CCS which represents negative emissions when 
considered on its own, then there would be higher remaining fossil fuel emissions, unless 
these remaining emissions are mitigated some other way. Thus, diverting biomass from 
liquid fuel production to hydrogen production with CCS does not necessarily lead to lower 
emissions. 

 
16 The National Academy of Sciences report that the land area required to remove 1 million metric ton of CO2 from the air would require about 1,700 
acres (equivalent of 7 km2) (National Academies of Sciences, Engineering, and Medicine, 2019)16. Meanwhile, the amount of land required to power 
DAC with renewables only is even greater; for example, 1 MMTCO2 captured/year with DAC would require on average 700 MW of solar photovoltaic 
(PV) capacity16. NREL estimates that each MW of solar PV requires 7 acres of land (NREL, 2017)resulting in an average 6,600 acres of total land required 
to remove 1 MMTCO2/year via DAC. In comparison, the equivalent forest land required to capture 1 MMTCO2/year is about 15 times greater. 
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As noted earlier in the report, the geological sequestration potential for carbon dioxide in California is 

large and is not likely to be a limiting factor for CCS development, with an estimated 5.2 GtCO2e in oil & 

gas reservoirs and at least 30 GtCO2e in saline aquifers (WESTCARB 2010).  

3.5 Estimated 2045 Cost Per Ton of Advanced Mitigation Measures 

In this analysis, all three scenarios adopt a very similar combination of measures to decrease emissions by 

at least 80% by 2045 from 1990 levels and thereby embody similar costs for these measures. To achieve 

net zero emissions by 2045 (excluding NWL), each scenario adopts a different combination of advanced 

mitigation and carbon dioxide removal measures (or NETs) that will incur additional cost. These are 

referred to as mitigating the “last 20%” of gross emissions in the State, because they reflect the additional 

measures that reduce the last 20% of emissions from 80% to 100%. The future cost of these advanced 

mitigation measures and CDR options are uncertain, particularly as we look farther into the future. 

However, based on information available today, the cost ranges of each mitigation measure are evaluated 

and presented in Figure 25.  
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Figure 25. 2045 greenhouse gas abatement cost ranges for technologies that could be used to mitigate 
the “last 20%” of energy sector emissions to achieve carbon neutrality in California (2018 
$/tonne CO2e) 

 

The CDR options highlighted in the figure focus only on two NET options: Bioenergy with CCS and Direct 

Air Capture (with CCS). Additional carbon sequestration options might be available in the future such as 

carbon mineralization, but limited information is available on these today to provide a reasonable cost 

range. Natural and working lands may also provide an additional carbon sink for the State but the 

availability and amount of these is unclear and is contingent on the impact of natural sources of 

emissions.17 

 
17 This will be the topic of future CARB analysis.  
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Negative emissions technology cost ranges reflect low and high technology costs sourced from academic 

literature. Emissions abatement cost ranges are estimated for 2045 based on E3 analysis and academic 

literature, and are represented in real, 2018 dollars per metric ton of CO2e avoided. Cost ranges provided 

in Figure 25 reflect low and high costs for the following input variables: 

 Electricity Price – MDV & HDV Electrification, Industry Electrification 

 Hydrogen Price – HDV Hydrogen, Industry Hydrogen 

 Synthetic Natural Gas Price – Synthetic Natural Gas 

 Zero emissions dispatchable generation cost - Electricity Cost to 100% Clean 

The qualitative attribution of each of these “last 20%” measures by scenario is as follows, while the specific 

breakdown of measures by scenario is provided in Table 1:  

 All scenarios adopt MDV and HDV electrification and HDV hydrogen fuel cell adoption (for long-

distance use) in order go beyond 80x50 to an 80% reduction by 2045 emissions abatement level. 

These mitigation measures could provide savings of as much as $280/tCO2 - thanks to the fuel 

savings that come with avoiding fossil fuel use in transportation - and could cost as much as 

$80/tCO2 for the adoption of hydrogen fuel cell HDV. The Balanced and Zero Carbon Energy 

scenarios achieve greater emissions abatement from these measures than the High CDR scenario 

does. 

 Industry CCS is also adopted across all scenarios at a cost range of $100 - $120/tCO2. This range 

reflects a weighted average of the estimated cost ranges for industry applications in the state 

including glass, non-mineral materials and cement manufacturing, The Balanced and Zero Carbon 

Energy scenarios achieve greater emissions abatement from this measure than the High CDR 

scenario does.  

 The electrification of industrial process heat as well as using hydrogen to displace some natural 

gas for high temperature industrial process heat requirements and in boilers are adopted in both 

the Balanced and Zero Carbon Energy scenarios at an estimated cost range of $150-$420/tCO2.  
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 100% zero carbon electricity generation is also adopted in both the Balanced and Zero Carbon 

Energy scenarios reflecting the cost of zero carbon dispatchable generation to decarbonize the 

last 5% of emissions from electricity generation in the state. This is estimated at an average 

estimated cost of $150-$350/tCO2 based on the cost of substituting natural gas with hydrogen or 

biomethane in natural gas generators. 

 The Zero Carbon Energy Scenario is the only scenario to include synthetic natural gas use, which 

has an estimated cost range of $420-$1000/tCO2 mitigated.  

 All scenarios assume some amount of negative emissions from CDR to mitigate remaining gross 

emissions in 2045 (see Table 6). Based on the literature reviewed, these costs are estimated to 

range between $110/tCO2 and $310/tCO2. The range of costs quoted for BECCS reflect the cost of 

biomass combustion combined with CO2 capture technology (Consoli, 2019) while the cost of 

direct air capture reflects the range of cost for solvent-based DAC (National Academies of 

Sciences, Engineering, and Medicine, 2019). Both assume a $20/tCO2 cost adder for 

transportation and storage of CO2 (Edward S. Rubin, 2015) 

Given the range of costs for advanced mitigation measures and NETs as well as the varying amounts of 

reliance on each in the three scenarios, the relative cost impact these have on each scenario is uncertain 

and likely to fall within the same large range of total adoption cost. Further detail on the cost ranges 

estimated for each of the advanced mitigation measures and NETs highlighted here is provided in 

Appendix 6.1.  
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4 Conclusions and Next Steps  

4.1 Summary of Key Conclusions  

This study aims to help inform the discussion on carbon neutrality in California by focusing on achieving 

net zero emissions across California’s energy economy18. Three scenarios are developed in this work to 

highlight a variety of plausible pathways towards carbon neutrality in the energy sector. 

Each of the three scenarios developed (High CDR, Balanced, and Zero Carbon Energy) includes a 

combination of known mitigation strategies that achieve an 80x50 target, including significant amounts 

of energy efficiency, electrification, and low carbon fuel adoption. To go beyond 80x50 and reach 80% 

emissions reduction by 2045 a suite of advanced mitigation options and negative emissions technologies 

are needed and discussed in this study. The advanced mitigation measures highlighted in this study are 

(listed in Table 7) the adoption of industry CCS, electrification of medium and heavy duty vehicles and 

hydrogen fuel cells for long-distances, electrification of industrial boilers, hydrogen use in industry, zero 

emissions electricity generation, synthetic fuel adoption and the electrification of industrial process heat. 

Finally, carbon dioxide removal strategies are needed as well, and would include negative emissions 

technologies such as direct air capture with CCS, to mitigate remaining emissions and reach net zero 

emissions by 2045.  

 

18 The CARB Scoping Plan process will provide a broader forum for statewide decision-making on carbon neutrality pathways.  
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While all scenarios assume some level of these advanced mitigation measures and CDR, the scenarios are 

ranked based on their relative amounts of each and degree of fuel combustion (implying impacts on local 

air pollution and health), climate change mitigation risk, and technology implementation and adoption 

risk. Two bookend scenarios are developed, which either rely on a significant amount of CDR options 

(“High CDR”) or limit the amount of gross emissions as much as possible by adopting a broad suite of 

advanced mitigation measures and early emission reduction strategies to minimize the need for CDR 

(“Zero Carbon Energy”). The High CDR scenario has the highest potential risks for local air quality, and 

implied health impacts, as well as climate change mitigation risk, while the Zero Carbon Energy scenario 

has the lowest risk for these two factors. Meanwhile, both scenarios are deemed to have a high 

technological implementation and adoption risk as these both rely significantly on technologies that are 

not commercialized to date and rely on the very early adoption of decarbonization measures.  

The Balanced scenario, which includes a combination of the measures adopted in each of the bookend 

scenarios, may provide a balance of trade-offs in terms of impacts on health and air pollution, climate 

change mitigation risk, and technological implementation and adoption risk. The cost of these scenarios 

relative to one another is uncertain as the strategies that each of these rely on are for the most part not 

commercialized to date and are each subject to their own range in costs. The NETs considered here might 

vary between $110/tCO2 and $370/tCO2, while the advanced mitigation measures vary from negative cost 

(MDV and HDV electrification displacing expensive fuel options) to more expensive than CDR, ranging as 

high as an estimated $420 - $1,000/ton for synthetic natural gas.  

The measures adopted to achieve 80x50 in all three scenarios (energy efficiency, electrification in 

transportation and buildings, and the decarbonization of electricity generation), are considered “least 

regrets” mitigation strategies. Cross-sector decarbonization is also particularly reliant on the availability 

of low carbon fuels. Whether these fuels are biomethane, hydrogen or synthetic fuels will depend on their 

relative economics by 2045 and their availability. Continued development of these zero-carbon fuel 

sources is likely to be a key for achieving economy-wide carbon neutrality. In addition, a significant 
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reliance on negative emissions across all scenarios is far from being trivial, with the lowest at 33 MMT/year 

in 2045 and at the highest 80 MMT/year in 2045. Given the limited commercial availability of CDR and 

NETs today, it is critical that continued research and investment be dedicated to these if they are to 

become a key pillar to help achieve statewide carbon neutrality.  

4.2 Areas for Further Study and Next Steps 

This analysis focuses on the emissions from sources under AB 32 and technology-based strategies to 

mitigate them and uses these strategies to define a qualitative impact that carbon neutral strategies (as 

defined in this study) might have on health, climate risk and technology adoption and implementation. 

Further investigation is needed in several areas pertaining to the risk and feasibility of such carbon neutral 

scenarios, a few of which are listed here:  

 Maximizing co-benefits for heavily burdened communities with respect to environmental justice 

issues and equity; 

 The impact of large infrastructure development associated with renewable energy development, 

hydrogen production, and/or DAC with CCS on land use compared to the use of natural and 

working lands as a carbon sink;  

 A better understanding of the adoption challenges that vehicle and building electrification 

strategies might face as well as the practical infrastructure rollout needed, e.g. distribution and 

transmission upgrades to match growth in electric loads; 

 Strategies to incentivize the development of advanced mitigation strategies, in particular low 

carbon fuel production, CCS, and NETs and to bring down their costs;  

 The infrastructure development needs to deploy a hydrogen and/or carbon dioxide transport and 

storage system in-state, and potentially out of state.  
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The above list is an initial attempt at highlighting areas of continued research which might help inform 

new and more specific policies to incentivize the suite of advanced mitigation measures and CDR needs 

that this study highlights. Subsequent to this report, CARB will be developing their 2022 Scoping Plan 

which will provide more focus on the implications of the state’s 2045 goal on policy and implementation 

needs for 2030.   
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6 Appendix 

6.1 Description of Cost Ranges of Advanced Mitigation Measures and 
NETs 

This section provides more detail on the cost ranges provided in Figure 25.  For more details on specific 

cost assumptions, see the accompanying Microsoft Excel spreadsheet posted on the CARB Carbon 

Neutrality Meetings and Workshops website, from August 19th, 2020.19  Throughout the report, all 2045 

costs are shown in 2018 real dollars, unless otherwise specified.  

Electrification of medium duty trucks generates net cost savings, due to avoided fossil fuel use in trucks.  

The California Air Resources Board recently adopted the Advanced Clean Truck standard, which requires 

between 40% and 75% zero-emission truck sales by 2035 depending on vehicle class.  The CARB Board 

and Executive Order N-75-20 called on the agency to determine how to transition the state’s truck fleet 

to zero-carbon by 2045, with drayage, off-road vehicles and equipment operations to be zero-emissions 

by 2035.  This analysis suggests that getting the state’s trucking fleet to zero-carbon by 2045 is among the 

lower-cost options available to reduce the last 20% of emissions from the state.     

Bioenergy with carbon capture and sequestration (CCS), or BECCS, and direct air capture with CCS are the 

main negative emissions technologies considered today. BECCS is limited by the amount of biomass 

available in California (See Section 2.4.7).  

The amount of direct air capture with CCS available to California (with assumed energy provided by solar 

PV), is limited by the amount of land required to capture each metric ton of carbon dioxide. Bioenergy 

 
19 See: https://ww2.arb.ca.gov/our-work/programs/carbon-neutrality/carbon-neutrality-meetings-workshops  

https://ww2.arb.ca.gov/our-work/programs/carbon-neutrality/carbon-neutrality-meetings-workshops
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with CCS costs reflect the cost of capturing CO2 from a high purity stream though a post-combustion 

amine-based process and transporting and storing it in a deep geological reservoir. The range of DAC costs 

reflect low and high estimates for solvent-based DAC (National Academies of Sciences, Engineering, and 

Medicine, 2019) and powered by off grid solar PV at $11/MWh (optimistic case) or $15/MWh 

(conservative case) also combined with transport and storage costs. The cost of transporting and storage 

CO2 is estimated at $20/tCO2.  

Decarbonization in the industrial sector, through a combination of carbon capture and sequestration 

(CCS), hydrogen and electrification (both industrial heat pumps and resistance heating), has a range of 

costs.  The emission abatement potential for CCS in California industry is relatively limited and is estimated 

at 15-19 MMTCO2 avoided per year. Meanwhile, hydrogen is also considered a viable carbon-free 

alternative to burning natural gas for process heat and energy input. The cost range associated with 

industry hydrogen in Figure 25 reflects cost ranges for alkaline electrolyzers by 2045 powered by off-grid 

solar PV in California or the Southwest and delivered to an industrial plant. The hydrogen commodity cost 

in 2045 is estimated at $21/MMBTU on the conservative end and $11/MMBTU on the optimistic side, plus 

an estimated additional $4/MMBTU for storage and delivery (in real 2018 dollars). The industry 

electrification measures considered for this analysis include electric boilers, industrial heat pumps, electric 

resistance for glass melting, and a generalized replacement of gas combustion with electric resistance. 

The draft report originally included induction furnaces for steelmaking as an option for industry 

electrification, but this has been removed on based on our assessment that this process is not 

representative of the metals industry in California. 

The cost range for decarbonizing the last 5% of electric sector emissions presented in Figure 25 reflects 

the cost of substituting hydrogen (or biomethane) for natural gas in gas generators. There are many 

technology options that could be available to decarbonize this last 5% of electric sector emissions, such 

as hydrogen, biomethane, long-duration energy storage, and advanced nuclear; however, this figure 
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focuses on the cost assuming hydrogen were to be used, while noting that the range of biomethane costs 

could also be in a similar range as hydrogen in the 2045 timeframe.  

Electrification in the transportation and buildings sector are important decarbonization strategies in any 

low-carbon future.  Electrification in these sectors means that an increasingly large share of energy 

services across the economy rely on electricity.  Thus, decarbonizing the electricity sector enables higher 

GHG reductions across the economy.   

Table 8: Estimated land requirement by scenario if all negative emissions were from DAC 

Scenario  Land Use Requirement for DAC 

High CDR  541,000 acres or 4.2% of California state owned forest land20  

Balanced  376,000 acres or 2.4% of California state owned forest land 

Zero-Carbon Energy  238,000 acres or 0.9% of California state owned forest land 

 

6.1.1 BIOMASS AVAILABILITY ASSUMPTIONS  

As in previous E3 reports, sustainable biomass is defined as consisting of California municipal solid waste 

(MSW), manure, agricultural residues, and forest residues, in addition to imports of similar feedstocks 

from other states up to a total equaling California’s population-weighted share of the United States 

 
20 California’s forest land accounts for 33 million acres of land in 2016 of which 19 million is own and managed by the federal government (Ecosystems 
of California 2016) 

https://ucanr.edu/sites/forestry/files/248435.pdf
https://ucanr.edu/sites/forestry/files/248435.pdf
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supply, estimated at ~40 million dry tons per year by 2040. This biomass potential estimate is held 

constant through 2050 in the model. Raw biomass supply curves are first developed from the U.S. 

Department of Energy’s Billion-Ton study and then supplemented with additional in-state MSW and 

manure resources from Jaffe (2016). The estimates of available biomass used in this study are within the 

range of other published California-specific studies, as shown in Table 9 below. 

Table 9: California Biomass Availability Across Different Data Sources (Million Bone Dry Tons per Year) 

Biomass Type CCST21: 2050 Resource 

(Baseline Scenario) 

E3 Assumptions: 

2045 Resource 

LLNL22: 2045 

Resource 

CCST: 2050 Resource 

(High-Biomass Scenario) 

In-State Wastes & 

Residues 
36.1 28.0 56.0 77.1 

Imported Wastes 

& Residues 
Not included 12.1 Not included Not included 

Total 36.1 40.1 56.0 77.1 

6.2 Carbon Neutrality Goals in Other Jurisdictions  

Before the current U.S. administration decided to withdraw from the Paris Agreement, the previous U.S. 

Obama administration was developing plans for the U.S. to achieve an 80% reduction in greenhouse gas 

emissions by 2050.  The United States Mid-Century Strategy report released in November 2016 illustrates 

pathways for the US to achieve an 80 by 50 goal cost-effectively (White House, 2016). This study laid out 

 
21 CCST. 2013. California’s Energy Future – The Potential for Biofuels, https://ccst.us/wp-content/uploads/2013biofuels.pdf 
22 LLNL. 2020. Getting to Neutral: Options for Negative Carbon Emissions in California, https://www-
gs.llnl.gov/content/assets/docs/energy/Getting_to_Neutral.pdf 
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recommendations for transforming the energy system in the U.S. with significant amounts of energy 

efficiency, electrification, decarbonization of electric power, emissions reduction through land sinks and 

carbon removal technologies, and measures to reduce non-energy emissions.  

Following the release of the IPCC’s 1.5C Special Report published in November 2018 (IPCC, 2018), 

jurisdictions around the country and world have since adopted more ambitious climate targets that are in 

line with the aim of limiting global temperature increases to 1.5C. In addition to California, other 

jurisdictions that are aiming for economy-wide carbon neutrality by mid-century or earlier include, but 

are not limited to, New York, Hawaii, Canada, South Korea, New Zealand, the United Kingdom (UK), the 

European Union (EU) as well as specific EU country goals. In December 2019, the United Nations 

announced that 73 countries, as well as 14 regions and 398 cities are working towards achieving net-zero 

CO2 emissions by 2050 (UNFCCC, 2019). A summary of some of these state and national goals and efforts 

in other jurisdictions are provided below: 

 New York’s Climate Leadership and Community Protection Act (CLCPA), passed in June 2019, 

updated the state’s climate targets to aim for net zero carbon emissions by 2050 with a clean 

electric grid by 2040 (N.Y., 2019). Of these emission reductions, 85% must come from New York’s 

own energy emissions, the remaining 15% can come from carbon reductions.  New York is 

currently hosting a series of Climate Action Council (CAC) Meetings in support of achieving this 

carbon neutral law. In June 2020, NYSERDA released a public report on, “Pathways to Deep 

Decarbonization in New York State,” describing scenarios that could achieve the state’s carbon 

neutrality goal by mid-century (NYSERDA, 2020). 

 A UK law, passed in June 2019, says that the country will need to bring emissions to net zero by 

2050 (UK, 2019). The law reflects recommendations from the UK’s independent advisory group, 

the Committee on Climate Change (CCC) as laid out in their “Net Zero” Report released in May 

2019 (CCC, 2019). 

 New Zealand set the Climate Change Response (Zero Carbon) Amendment Act into law in 2019, 

which aims at net zero emissions of all greenhouse gases other than biogenic methane by 2050 
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(New Zealand Ministry for the Environment, 2019). With the agricultural sector responsible for a 

large part of New Zealand’s GHG emissions, the country has an additional target of 24% to 47% 

reductions of biogenic methane emissions by 2050 compared to 2017 levels.  

 In Canada, the Government recently announced that it will develop a plan to set Canada on a path 

to achieve net-zero emissions by 2050 (Environment and Climate Change Canada, 2020). 

 In anticipation of strengthened 2030 targets in the European Green Deal, many European 

countries, such as Germany, Switzerland, the Netherlands and  Norway, have already adopted 

national targets that exceed the currently binding EU target of 40% by 2030 (Federal Ministry for 

the Environment, Nature Conservation and Nuclear Safety). In addition, Austria, Sweden, France, 

Denmark and Germany have climate policies in place that aim at zero net greenhouse gas 

emissions by 2040 (Austria), 2045 (Sweden) and 2050 (rest) respectively.  

 One of the countries within the European Union with progressive, country-specific climate goals 

is Sweden. In 2017, Sweden enacted a climate policy framework that sets a target of zero net 

emissions by 2045 and negative emissions thereafter (Government Offices of Sweden, 2018). 

Within this framework, emissions from activities in Sweden must be at least 85% below 1990 

levels by 2045, the remaining emissions may be covered by carbon sinks or offset by emission 

reductions abroad.   

 Scotland, likewise, has set a legally binding target requiring the country to achieve net zero 

emissions by 2045. Currently, 20% of these emissions reductions may come from purchased 

carbon credits, while the remaining 80% must come from within Scotland. By 2050, the amount 

of carbon credits must be reduced to 10%, with the goal of eliminating the use of carbon credits 

thereafter (Parliament, 2018).  

The European Union and its Member States formally ratified the Paris Agreement in 2016 and are 

committed to a binding target of at least a 40% reduction in greenhouse gas emissions (from 1990 levels), 

32% share of renewable energy and 32.5% improvement in energy efficiency by 2030 (European 

Commission, 2018). To operationalize these targets, Member States have been mandated to comply with 

the integrated monitoring and reporting rules towards 2030 set forward by the European Commission. 
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Under this governance system, all Member States submitted National Energy and Climate Plans for the 

period 2021-2030 in December 2019 (European Commission, 2018). 

The European Union is now on route to agreeing on more ambitious emission reduction targets with the 

launch of the “European Green Deal”. This Green Deal represents a roadmap towards a climate neutral 

Europe in 2050 and outlines a financial investment plan to support the proposed measures (European 

Commission, 2019). As part of this proposal, the Commission aims to raise the EU target to at least 50% 

reductions and is moving towards 55% greenhouse gas emissions reductions by 2030. A European Climate 

Law that would make the net-zero goal by 2050 legally binding for all Member States is currently under 

consideration. 

On July 8, 2020, the European Commission published “A Hydrogen Strategy for a Climate-neutral Europe”, 

announcing hydrogen as a key priority to achieve the European Green Deal and Europe’s clean energy 

transition (European Commission, 2020).23 By 2030, renewable hydrogen technologies are expected to 

reach maturity and be deployed at large scale, anticipating that about a quarter of renewable electricity 

might be used for hydrogen production by 2050 (European Commission, 2020). Some European Member 

States, such as Germany, France and the Netherlands, already have individual hydrogen targets in place: 

Germany plans to establish up to 5 GW of generation capacity by 2030 and an additional 5 GW no later 

than 2040; the Netherlands aims to realize 3-4 GW of installed electrolysis capacity by 2030, expecting a 

reduction in capital expenditures of up to 65% (Federal Government of Germany, 2020), (Government of 

the Netherlands, 2019).  In 2018, France published a hydrogen deployment  plan aiming to increase the 

industrial consumption of hydrogen to 20-40% by 2028 (Republique Francaise, 2018). These hydrogen 

strategies are designed to complement the country’s existing carbon reduction strategies, including 

 
23 The plan consists of an objective to install at least 6 GW of electrolysis to produce up to 1 million tons of renewable hydrogen by 2024, growing to 
40 GW and 10 million tons respectively in 2030. 
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efforts to improve energy efficiency and to electrify large swaths of the transportation and building 

sectors.   

 


