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Physicists have been working on engineering quantum materials in order to build highly tunable,
coherent quantum simulators that serve as a tool to solve problems in many-body physics that
require heavy numerical calculation and also a candidate to the realization of quantum computers.
In this paper, I will review the realization of Rydberg-atom simulator and how it leads us to quantum
many-body scars.
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I. INTRODUCTION

A fully controlled, coherent many-body quantum sys-
tem is an ideal system for quantum simulation. Such
systems shade light on research regarding strongly cor-
related quantum systems, quantum entanglement, new
states of matter, and quantum information processors.1

Quantum simulation and computation have been stud-
ied in a variety kind of platforms, such as trapped ions2

and superconducting qubits3. Using neutral atoms as a
platform has several advantages: 1. such systems have
coherent properties, 2. it is easy to create a large num-
ber of atoms, 3. atoms can be strongly coupled to light.
However, the disadvantages include the weak interaction
between atoms and the challenge to control neutral atoms
individually.

The Lukin group (Bernien et. al.) from Harvard
University realized a 51-qubits quantum simulator using
Rydberg atoms array4 that circumvents those problems.
Making use of the long lifetime and strong interaction of
Rydberg atoms with clever trapping skills, they are able
to create a quantum material system that simulate Ising-
type quantum spin model. They observe different phases
of ordered states that break various discrete symmetries.
Also, although this system is not integrable, they observe
exotic many-body dynamics that seem to be non-ergodic.
This hints the observation of quantum many-body scar.
After their publication, Turner et. al. from University of
Leeds published a theoretical paper using the same sys-
tem as the experimental work done by the Lukin group
but using L = 32 as the system size instead. They fur-
ther interpret the experimental observation as a result of
weak ergodicity breaking due to the special eigenstates in
the spectrum. This resembles quantum scars in chaotic
non-interacting systems.5

In this paper, I will first review the experimental work
done by the Lukin group and then show how Turner et.
al. come to the conclusion that the observed exotic be-
havior is a realization of quantum scar.

II. EXPERIMENTAL OBSERVATION

A. Rydberg atoms and Rydberg blockade

Rydberg atoms are atoms being in the excited states
with a large quantum number, n. Such excited states are
called Rydberg state. In Rydberg states, n is so large
that the electron is only weakly bound to the ionic core,
making it sensitive to external electric field. The po-
larizability α ∼ n7. The same also applies when the
electric field is generated by the charge distribution of
another Rydberg atom. Thus, Rydberg atoms exhibits
very strong interactions. The large quantum number
also gives Rydberg atoms long lifetimes since the life-
time τ ∼ n3 if directly decay to ground state and τ ∼ n5
if decaying through other Rydberg states.

The interaction between Ryderbeg atom pairs is van
der Waals interaction and it scales as ∼ n11/r6, where r
is the distance between the atoms. When bringing two
atoms too close together, the dipole-dipole interation be-
tween two atoms shifts the Rydberg level of one atom
far away from resonance, making it unable to be excited.
We say that this atom is blocked. This phenomenon that
we can only excite one atom is called Rydberg blockade.
It has been used to generate quantum gates6 To observe
Rydberg blockade, two conditions have to be fulfill: 1.
atoms should be close enough to have strong interaction.
2. Atoms should be far enough that they can be individ-
ually controlled. Therefore, the Lukin group uses tightly
focused laser traps, the so-called optical tweezer arrays,
to explicitly control those atoms.

B. Rydberg atom array as a quantum simulator

The quantum dynamic of Rydberg atom array can be
described by the Hamiltonian

H =
∑
i

Ωi

2
Xi −

∑
i

∆ini +
∑
i<j

Vijninj (1)
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FIG. 1: Rydberg atoms(blue) are trapped individually inside
tweezer arrays(red) and coupled by Rydberg lasers(orange).

FIG. 2: A schematic phase diagram of the Hamiltonian in
equation (1). The white circle represents ground state, and
the black circle represents Rydberg state. Figure adapted
from Bernien et al.4

assuming ~ = 1. ∆i are the detunings of the driving
lasers from the Rydberg state, Xi = σi

x = |gi〉〈ri| +
|ri〉〈gi| is the Pauli X operator. It describes the cou-
pling between the ground state |gi〉 and the Rydberg
state |ri〉 of an atom at position i. ni = |ri〉〈ri|, and
Ωi is the Rabi frequency of the system. This paper fo-
cus on the homogeneous coherent coupling, the condition
that |Ωi| = Ω,∆i = ∆. These two parameters can be
controlled by changing laser intensities and detunings in
time. The Rydberg-Rydberg interation Vij can be tuned
by changing the distance between atoms or by coupling
atoms to a different Rydberg state.

The experimental protocol that Lukin group imple-
ments is as follows: The cold atoms are first loaded from
a magneto-optical trap to tightly focused laser trap array,
as shown in Fig. 1 To remove the entropy from the sys-
tem, they simply take a fluorescence image of the system
to identify the position of the empty tweezers and then
remove those traps. The remaining traps are then rear-
ranged and form a regular atom array. Next, the traps
are turned off and the system evolve under the unitary
time evolution U(Ω,∆, t). This is realized by coupling
the atoms to the Rydberg state |r〉 = |70S1/2〉

One constraint that should be considered here is Ry-
dberg blockade. It happens when two atoms are close
enough that Vij > Ω. When Vij = Ω, we define the
Rydberg blockade radius Rb. Here, Rb = 9µm. Rydberg

blockade can be generalized to multi-atom situation, that
is, if we have multiple atoms within Rydberg radius, we
would only be able to excite one of them. The system
would only have two effective states, ground state being
|g1g2g3....〉, where all atoms are in |g〉, and the excited

state being 1/
√
N(

∑
i |g1...ri...gN 〉). This is a superpo-

sition of the states where only one atom is excited and
others remain in the ground state, assuming we have N
atoms.

The Hamiltonian for this system resembles the Ising-
type spin model. By tuning the detuning, ∆/Ω and the
interaction range Rb/a, where a being the trap spacing,
different phases can be presented, as illustrated in Fig. 2.
For example, at large negative values of ∆/Ω, the sys-
tem will be in its ground state, where all the atoms are
in the state |g〉. As we increase ∆/Ω toward positive
value, the number of atoms in |r〉 increases. In this re-
gion, the interaction range become important because
Rydberg blockade needs to be considered. By tuning
the interaction range, we can create situations such as
Vi,i+1 � ∆� Ω� Vi,i+2. This is the case that blockade
happens for neighbouring atoms. In this case, the atom
array will arrange like |r1g2r3g4...〉. Z2 translational sym-
metry is broken and we call this state Z2-ordered states.
In the situation that Vi,i+1, Vi,i+2 � ∆ � Ω � Vi,i+3,
blockade happens for every three nearest atoms. This
results in states such as |r1g2g3r4g5g6...〉. This is the Z3-
ordered state. By extending blockade, Zn-ordered states
can be created. In the experiment, they first prepare the
initial state in |g1g2g3....〉 by optical pumping and let the
laser detuning ∆ < 0. They then adiabatically sweep
the detuning to positive to reach one of the Zn-ordered
states. By varying the trap spacing a, the distance be-
tween atoms in the array is changed, resulting in different
phases (different symmetry breaking).

C. Quench dynamics

Beside adiabatic sweep in Zn-ordered states, Lukin
group also presents the quench dynamics in the Z2-
ordered phase. Starting from the Z2-ordered state, they
suddenly change the detuning to resonance ∆ = 0. After
this quench, they observe coherent and persistent oscil-
lations as shown in Fig. 3. The oscillation persist beyond
1/Ω and 1/Vi,i+1. This is surprising because the persis-
tent oscillations hint a non-ergodic, thus ETH breaking
behavior, however, the only known conserved quantity of
the Hamiltonian is the total energy, meaning that this
system is not an integrable system. This behavior is not
likely to be dependent of the system size since the array
of 9 atoms and 51 atoms have a similar behavior after
the quench. This is shown in Fig. 4 With the help of
numerical calculation, they conclude that the decay of
the oscillation is controlled by the next-nearest-neighbor
interaction.

In addition, they compare the oscillation behavior of
the Z2-ordered state and the state |g1g2g3...〉 after a
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quench. The initial state |g1g2g3....〉 Hamiltonian quickly
reach thermal equilibrium compared to the Z2-ordered
state case. The interpretation of this persistent oscilla-
tion described above hinting the dynamic that the system
neither obey ETH nor strongly break ETH remain un-
clear.

III. THEORETICAL MODEL

A. Thermalization and quantum scar

Thermalization in classical mechanics is based on the
ergodic hypothesis. If, after a long period of time, all mi-
crostates of the system are accessed with equal probabil-
ity, the system reaches thermal equilibrium. In quantum
mechanics, however, this definition cannot be directly
translated since the probability of finding the system in
a given state is based on the choice of the initial state,
making one unable to track a trajectory in the phase
space. Therefore, the eigenstate thermalization hypoth-
esis (ETH)7, describing thermalization in isolated quan-
tum systems using properties of eigenstates, is proposed.
Isolated quantum systems that present ergodic dynamics
are systems that obey ETH and are regarded as being
able to reach thermal equilibrium.

The highly non-equilibrium quantum matter has been
realized in a variety of platforms such as ultracold atoms,
trapped ions, and nitrogen-vacancy in diamond. Those
systems such as integrable systems and many-body lo-
calized systems strongly violate ETH. This motivates the
question that whether systems that only weakly violate
ETH exist?

Turner et. al. provide a theoretical model based on the
dynamic of Rydberg atom array described in the previous
section and claim that this is a system that weakly violate
ETH5. The distinct behavior of this system is called
“quantum many-body scarring.”

B. PXP model

Note that the ni in equation (1) corresponds to the
density of excitations on site i and ni = (1 + Zi)/2,
whereXi, Yi, Zi are Pauli operators. Consider the limit
situation that nearest-neighbor interaction Vi,i+1 �
∆,Ω. Assuming ∆ = 0, v = Vi,i+1 and rescale the Hamil-
tonian in equation (1) by 1/V, we have

H ′ = H0 + εH1 =
∑
i

nini+1 + ε
∑
i

Xi (2)

, where ε = Ω/2V is a small perturbation. Under the
constraint of Rydberg blockade, it is useful to introduce
the projector Pi = |gi〉〈gi| = (1− Zi)/2.

The effective Hamiltonian can be obtained by the
Schrieffer-Wolff transformation. We are interested in the
low-energy subspace that no adjacent excited states exist.

The projector onto this subspace is P =
∏

i(1− nini+1).
In this subspace, H0 in equation (2) vanishes so the first
non-trivial order would be HSW = εPH1P . Rescaling
again, the Hamiltonian can be written as

H =
∑
i

Pi−1XiPi+1 (3)

This is the so-called PXP model. Pi here makes sure
that only one of the two adjacent atoms can be in excited
state. This constraint comes from Rydberg blockade. For
spins-1/2 chain, the Hilbert space dimension D scales as
2L, where L is the system size. Now that adding an
additional atom to the chain increases the dimension by
an amount smaller than the spin-1/2 chain case adjacent
excitation is not allowed. Under this constraint, D scales
as FL+1 + FL−1, where Fn is the nth Fibonacci number.
Here we consider periodic boundary conditions (PBC).

Inspired by the experiment performed by the Lukin
group, the Turner group starts by considering the initial
state |g1g2g3...〉 and the Zk-ordered states, which means
that atoms in excited states are separated by k−1 atoms
in the ground state. Using infinite time evolving block
decimation (iTEBD) method, they found that the en-
tanglement entropy for the midpoint bipartition for all
initial states mentioned before grow linearly, as shown in
Fig. 5 The slope however, depends on the initial state.
The Z2-ordered state has the smallest slope. Besides lin-
ear growth, weak oscillations are also observed. By sub-
tracting the linear component, the period of oscillations
is 2.35, which are found to be the same as the experi-
mental observation.4 This is remarkable because the state
|g1g2g3...〉 and the Z2-ordered states has the same energy
under the Hamiltonian described in equation (2). Thus
we expect them to reach the same temperature if the sys-
tem thermalizes. However, the Z2-ordered state shows
oscillations and does not thermalize for a long time.

C. Special eigenstates

In this section I will show how the Turner group reaches
a conclusion that the observed oscillations are due to the
existence of special eigenstates.

If a system reaches thermal equilibrium, the initial
state and the eigenstates should be independent with
each other. To research on the thermalization of this
system, the Turner group first try to look at the overlap
between the initial state of the system, the Z2-ordered
state, and the eigenstates of the Hamiltonian in equation
(3) as shown in Fig. 6 The exact eigenstates are obtained
under the condition that system size L = 32 and PBC.
We can see that there is a ”band” of eigenstates that
are highly overlap with the Z2-ordered state. Moreover,
the energy spacing between these states stay constant
and it agree with the oscillation frequency obtained by
iTEBD method, for up to a factor of 2. This factor of 2
comes from the indistinguishable of |Z2〉 = |grgr...〉 and
|Z′2〉 = |rgrg...〉. The Tuner group then characterize these
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FIG. 3: Oscillation observed after sudden quench. This data is taken from a cluster of 9 atoms. The initial cluster is at
time t ∼ 2 when the detuning ∆ is tuned to zero, this configuration that the Rydberg excitation being at every odd trap site
collapsed to a configuration that the excitation being at every even trap site at t ∼ 2.5 and revive later at t ∼ 3. Figure adapted
from Bernien et al.4

FIG. 4: Similar persistent oscillations behavior for differ-
ent system sizes. Solid purple line is a fully coherent matrix
product state (MPS) simulation with bond dimension D =
256. Figure adapted from Bernien et al.4

FIG. 5: (a) Entanglement entropy for different initial states.
(b), (c) For the |Z2〉 initial state the entanglement entropy
oscillates around the linear growth with the same frequency
as the local correlation functions. The period of the oscillation
is found to be the same as the experimental observation from
the Lukin group. Figure adapted from Turner et al.5

special eigenstates by forward scattering approximation
(FSA) method.

To compare the difference of two states, we introduce
Hamming distance, which means The number of different
sites between two states. For example, the Hamming dis-

FIG. 6: Scatter plot of the overlap of many-body eigen-
states of the Hamiltonian in equation (3) and the Z2 product
state. This shows a band of special eigenstates separated
from the remaining eigenstates. Crosses denote overlaps with
eigenstates from the FSA approximation. The density of data
points (shown in the middle of the graph) illustrates the tower
structure in the overlaps. Figure adapted from Turner et al.5

tance between |ggg〉 and |rrg〉 is two. The Hamiltonian
can be splitted as H = H+ +H−, where

H+ =
∑

i∈even
Pi−1σ

+
i Pi+1 +

∑
i∈odd

Pi−1σ
−
i Pi+1 (4)

σ+
i = |ri〉〈gi| and σ−i = |gi〉〈ri|. H+ acting on |Z2〉 gives

a single spin flip and increases the Hamming distance by
one. H− decreases the Hamming distance. Starting form
the initial state |0〉 = |Z2〉 and going forward by acting
H+ on the states, a basis {|n〉} can be obtained. |n〉 =
(H+)n|Z2〉/‖ (H+)

n |Z2〉| ‖. This structure enable us to
write the Hamiltonian in a tri-diagonal martrix form
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HFSA =


0 β1
β1 0 β2

β2 0
. . .

. . .
. . . βL
βL 0

 (5)

, where βn = 〈n + 1|H+|n〉 = 〈n|H−|n + 1〉. Turner et
al. compare HFSA with the special ”band” described be-
fore and find that they are highly overlapped as shown
in Fig. 6. More specifically, they find that FSA approx-
imation agrees very will with the lowest-energy special
states. Though the approximation overestimates for the
states in the middle of the band, it captures the oscil-
lation. (Further data can be found in the paper5) The
FSA basis states form an orthogonal subspace {|n〉} of
dimension L + 1 and the scarred eigenstates can be com-
pactly represented as linear superpositions of L + 1 of
those basis states.

It is surprising that the FSA is able to successfully
predict the exact eigenstates since the FSA basis has only
L + 1 states and each of them concentrated in small parts

of the Hilbert space. For a highly excited eigenstate of a
thermalizing system of size L, this would provide a poor
approximation. This further reveals the atypical nature
of the special eigenstates.

IV. DISCUSSION

Though the cause of quantum scar are still not well un-
derstood, the surprising long-lived, periodic revivals after
quantum quenches in Rydberg atom arrays performed by
Bernien et al. and the theoretical model, especially the
PXP model that suggests quantuam scars proposed by
Turner et al. have drawn a lot of further discussions.8910

Similar scarring behavior has also been observed in a 1d
dipoler gas.11

Because of the coherent property and being able to
”memorize” the initial states, quantum scaring seems to
be a potential way to protect qubits from outside dis-
turbances that lead to information loss. Besides ther-
malizing problems in many-body physics, the research
in quantum scar also open new possibilities to quantum
computing.
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