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Unitary dynamics typically drives a closed many-body system towards larger entanglement, even-
tually saturating at a volume-law scaling for the entanglement entropies of subsystems. On the
other hand, local measurements could disentangle local degrees of freedom from the rest of the sys-
tem and therefore reduce the amount of entanglement. Recently it has been demonstrated that an
entanglement phase transition exists at some critical measurement rate. Below that rate, the system
exhibits volume-law entanglement and above that rate the system becomes area-law entanglement.
In this work, we reproduce the measurement induced entanglement phase transition with an 1D
hybrid random Clifford circuit model. We also extend the model to 2D as well as all-to-all coupling
to explore how the critical measurement rate changes with the dimension of the system. At higher
dimensions, the random unitaries are better at generating entanglement due to the increased con-
nectivity and therefore intuitively the critical measurement rate should be higher than 1D. Indeed
our results suggest a higher critical measurement rate at 2D as well as the absence of entanglement
phase transition with all-to-all coupling.
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I. INTRODUCTION

Quantum entanglement has been the essential concept
behind many modern understanding of condensed matter
physics', especially for characterizing many-body ground
states?®. Time evolution of entanglement entropy also
reveals universal behavior and provides new insights into
many-body dynamics out of equilibrium®''. For ther-
malizing phases the entanglement entropy grows linearly
in time and saturates with a volume law®, while for
many-body localized systems it shows a slow logarithmic
growth®7”. Practically, entanglement growth typically de-
termines the complexity of simulating many-body quan-
tum dynamics classically?, while the ability to generate
and manipulate entanglement is also crucial for quantum
computation.

Even though unitary dynamics tends to evolve towards
higher entanglement, local degrees of freedom under pro-
jective measurements will disentangle from the rest of
the system and therefore reduce the amount of entan-
glement. Remarkably, the competition between unitary
dynamics and local measurements could lead to an entan-
glement phase transition, where below a critical measure-
ment rate the system exhibits volume-law entanglement
and above that rate the system becomes area-law entan-
gled!315, From a quantum computing perspective, such
a competition widely exists in the near-term noisy quan-
tum devices where the depth of quantum circuits are lim-
ited by the amount of noise in the system'S. Studying
such measurement induced entanglement phase transi-
tion may also shed light on new schemes of quantum error
correction as well as future supremacy experiments”.

In this work, we numerically demonstrate the entan-
glement phase transition for 1D random unitary circuits
with measurements. We also explore how the phase tran-
sition behaves at higher dimensions by investigating 2D
models as well as all-to-all coupling models.

II. MODEL DESCRIPTION

Consider a hybrid random unitary circuit with both
local unitaries and measurements for L qubits arranged
on an one-dimensional chain (Fig. 1). The unitary evo-
lution is decomposed into multiple layers with each layer
formed by a sequence of non-overlapping two-qubit gates
acting on either all odd bonds or all even bonds. Every
two adjacent layers are defined as one discrete time step.
More specifically, layer ¢ implement the unitary (ignore
measurements here)

00 = 0, 00, = ( 1 Us;ﬂ) (H U;f;+1).

T even z odd

Therefore after time ¢ the state will evolve under |¢(t)) =
U® |(t —1)). The total time steps T will be large
enough so that steady state could be reached.

The measurements happen between unitary layers and
each qubit is measured independently with probability p.
Notice here measurements could be performed between
Ué\t,)en and Uég)d within the same time step ¢. Since all two-
qubit gates are random, the measurements are assumed
to be performed along Z axis without loss of generality.
In other words, with probability 1 — p nothing happens
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FIG. 1: Random unitary circuit with measurements. The
initial state is assumed to be a product state and the unitary
layers act on all the odd and even bonds in an interleaving
fashion. The total time steps T' is chosen to be large enough
so that steady state is reached and random local projective
measurements in the Z basis could independently happen at
any site in space and time with probability p.

and with probability p a single qubit will be projected
to |0) or |1) and gets disentangled from the rest of the
system.

We should mention that the model here works in the
framework of quantum trajectory, which unravels the
mixed state time evolution. Basically after each mea-
surement the state is randomly projected to another pure
state instead of tracking all possible outcomes with a den-
sity matrix. Therefore all results are averaged over the
three sources of randomness in this model: random uni-
taries, random measurement positions and random out-
comes of the projective measurements.

A. Clifford circuit

In order to simulate larger system sizes, all unitaries
are sampled independently from the uniform distribution
over the two-qubit Clifford group, instead of from the
Haar measure on U(4). By definition, Clifford unitaries
do not generate any entanglement in the operator space:
they simply map products of Pauli operators to another
products of Pauli operators. Therefore by tracking the
operators’ time evolution instead of the wavefunction,
Clifford circuits could be simulated efficiently on a clas-
sical computer as proved by Gottesman—Knill theorem'®.
Furthermore, random Clifford circuits approximate well
the random Haar circuits and both could generate vol-
ume law entanglement entropy®'°.

1. Entanglement entropy

To quantify the amount of quantum entanglement in
the steady state, we calculate the set of Rényi entropies,
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FIG. 2: (a) Time evolution of the entanglement entropy Sa
in the middle of the system, with subsystem A consisting of
sites 1 ~ L/2. (b) Rescaled steady state entanglement en-
tropy Sa as a function of the subsystem size |A| for different
measurement rates p. For better visualization, each curve is
rescaled linearly by the maximum entropy at that measure-
ment rate, so that after rescaling the maximum entropy for
different p will always be 1. In both plots, the legend gives
the measurement rate p for each line and the black dashed
line represent the critical rate p. &~ 0.16. The simulations are
done with L = 256 qubits and total time steps T' = 150 for
reaching steady state.

defined as

Su(4) = 1

—-—n

log Trlp], n >0 (2)

where the L qubits are bipartitioned into subsystems
A and B and p4 is the reduced density matrix py =
Trp |¢) (. In the limit of n — 1, Rényi entropy be-
comes the von Neumann entropy.

For any state generated by the random Clifford circuit
considered here, p4 will always have a flat entanglement
spectrum, meaning that all its non-zero eigenvalues are
equal to each other. In this case, all Rényi entropy are
also equal to each other and we will drop the Rényi index
n from now on.
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FIG. 3: Phase diagram and the leading order scaling of
steady state entanglement as a function of the measurement
rate p. Figure adapted from “Measurement-driven entan-
glement transition in hybrid quantum circuits”, by Yaodong
Li, Xiao Chen, and Matthew PA Fisher, Physical Review B,
98(20):205136, 2018,

2. Simulation algorithm

The simulation algorithm is based on stabilizer for-
malism, whose main idea is to represent a quantum state
as the common eigenstate of a set of mutually commut-
ing operators instead of specifying all amplitudes of the
wavefunction®?. The state time evolution under Clifford
unitary as well as measurements are performed by modi-
fying the set of operators correspondingly?'. Notice that
we only need L operators to uniquely represent a L qubit
quantum state, which would otherwise require 2 ampli-
tudes.

To complete the simulation, we also need to sam-
ple from the uniform distribution of two-qubit Clifford
group. Notice that different group elements will map
the operator basis X1, Z1, X5, Z5 to different sets of two-
qubit Pauli operators, and the mapping is a unique rep-
resentation of the unitary. Therefore we could just it-
erate over all possible mappings from X1, Z1, Xs, Z5 to
two-qubit Pauli operators and keep the mappings that
preserve all commutation relations among X1, Z1, Xa, Zs.
This way we have explicitly generated all elements in the
two-qubit Clifford group and then sampling uniformly
from it is trivial. A slightly different approach is to sam-
ple directly using an iterative algorithm, as presented in
the appendix of this paper™.

Finally, stabilizer formalism also allows efficient evalu-
ation of the entanglement entropy S(A) for any biparti-
tions of the system. See these papers®!'# for more details.

III. ENTANGLEMENT PHASE TRANSITION

Starting from an initial product state with all L = 256
qubits being |0), we evolve the state through the random
Clifford circuit (Fig. 1) and average over many circuit in-
stances for convergence (number of averages ranges from
100 to 2000, depending on the variance of the result).
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FIG. 4: (a) i) Spiral mapping and ii) raster scan mapping
of a 2D lattice into 1D string for evaluation of entanglement
entropy. (b) Steady state entanglement entropy Sa as a func-
tion of |A| along the 1D string mapped with spiral ordering
in (a) i). At low measurement rates, the symmetric feature
around L = 128 comes from a volume law entanglement while
at high measurement rates the zigzag pattern represents a 2D
area law with the spiral ordering. (c) Rescaled Sa versus
|A| for a system with all-to-all random unitary coupling at
different measurements p. Same as Fig. 2 (b), each curve is
rescaled linearly by the maximum entropy at that measure-
ment rate, so that after rescaling the maximum entropy for
different p will always be 1. (d) Maximal Sa for the all-to-all
coupling model as a function of the measurement rate p. In
other words, this is the linear rescaling factor used in (c).

Fig. 2 (a) plots the time evolution of the entanglement
entropy in the middle of the L qubits, with subsystem
A consisting of sites 1 ~ L/2. From this entanglement
dynamics, we could identify features that correspond to
an entanglement phase transition at critical measurement
rate p. &~ 0.16 (black dashed line). Below the critical rate
p < p. the entanglement entropy grows linearly in time
until saturation, while above the critical rate entangle-
ment growth is slower than linear and also saturates at
much smaller values.

To study the entanglement scaling, we calculate and
plot the steady state entanglement entropy S between
subsystems 1 ~ |A| and |A|+1 ~ L for 1 < |A| < 128
at different measurement rates p (Fig. 2 (b)). For better
visualization, each curve is rescaled linearly by the max-
imum entropy at that measurement rate, so that after
rescaling the maximum entropy for different p will always
be 1. Below p., the entanglement entropy scales linearly
with subsystem size which corresponds to a volume-law
scaling while above p. the entanglement entropy satu-
rates to a constant regardless what the subsystem size | A
is, which is a clear feature of 1D area law scaling. When
p < pe, the volume law scaling coefficient reduces as p
increases which means that at steady state the entropy



saturates to smaller values. Similarly when p > p., we
also see a reduction in entropy with larger p, except now
the saturation value doesn’t depend on |A|. A schematic
for the phase diagram and entanglement scaling is shown
in Fig. 3.

IV. HIGHER DIMENSIONS

Here we would like to extend the 1D results above
to higher dimensions and investigate how the entangle-
ment phase transition behaves. Intuitively, at higher di-
mensions, the connectivity between qubits is higher and
therefore the random unitary circuit could generate en-
tanglement more efficiently than 1D. For example, in the
absence of projective measurements, 2D random unitary
circuit only takes O(v/L) time to fully scramble and reach
the maximal entanglement volume law scaling, while in
1D the time required is O(L). Therefore we would expect
the critical measurement rate p. to increase at higher di-
mensions.

A. Two dimension

We again consider a system with L = 256 qubits, but
now we assume they are located on a 16 x 16 lattice
and the unitary time evolution is generated by 2D ran-
dom unitary circuits which respect the 2D locality. After
reaching the steady state, we map the 2D qubit array
into a 1D string for evaluating entanglement entropy so
that we could calculate Sy versus |A| along this string
and study the entanglement scaling. In one dimension,
the actual qubit arrangement gives a natural mapping
which also preserves the locality of the interactions. In
two dimensions, a raster scan mapping (Fig. 4 (a) ii) from
the top-left to bottom-right seems natural. However, the
boundary sizes for subsystem A along this mapping are
approximately constant (Fig. 4 (a) ii) and therefore not
ideal for showing 2D area law scaling. To access entropy
for square regions of increasing area, we choose the spiral
mapping (Fig. 4 (a) i) instead.

The steady state entropy along the spiral mapping for
different measurement rates is shown in Fig. 4 (b). At
small p, the entropy satisfies a volume-law scaling: S4
increases linearly with |A| until taking maximal value at
|A] = L/2. At large p, a zigzag pattern emerges which
corresponds to a 2D area law scaling. The corners of
the zigzag pattern happen exactly at k? where k is an
integer representing the edge length for region A and the
entropy increases with k because the boundary size is
larger. Ideally, area law scaling would generate a series
of constant entropy plateaus between site k% and (k+1)?2
and the extra oscillations in Fig. 4 (b) might be due to
the finite size of the system. Exactly identity the critical
measurement rate p. is a bit difficult since the transition
is not very sharp, but a reasonable estimate by looking at

the shape of the curves suggests that p. might be between
0.18 and 0.24, which indeed seems to be higher than 1D.

B. All-to-all coupling

Now we will consider an extreme case which is all-to-all
coupling. In this case, every qubit could interact with ev-
ery other qubit randomly and therefore the connectivity
is much higher. Another way to interpret this is 1D ran-
dom unitary circuit without the locality constraint. Ev-
ery time step, we basically randomly reshuffle the qubits
and then evolve the state according to the normal 1D
random unitary circuit. The linearly rescaled entangle-
ment entropy across the system is shown in Fig. 4 (c) and
the maximal entropy at any given measurement rate (in
other word the rescaling factor for each curve in Fig. 4
(¢)) is plotted against p in Fig. 4 (d).

As the measurement rate increases, the entropy gener-
ated by unitary evolution still reduces. However, even at
p = 0.9 there’s still no clear signature of area law scal-
ing and the steady state entropy always increases with
|A| and takes maximum at L/2. This suggests that an
entanglement phase transition from volume law to area
law scaling probably doesn’t exist with all-to-all coupling,
which is not too surprising because the notion of “bound-
ary” as well as “area” of any subsystem A is not really
well defined without the locality of the interaction.

Interestingly, the entanglement phase transition was
recently studied from a different perspective as a purifica-
tion transition'”, where the random unitary circuits with
measurements takes a fully mixed state as input and the
purity of the output state determines different phases of
the transition. Basically above a critical measurement
rate, the output state will be pure and below that rate,
the output state will stay mixed for an exponentially long
time. With this new measure, even all-to-all coupled sys-

tems exhibit phase transition behavior!”.

V. CONCLUSION

In this work, we investigated the entanglement phase
transition induced by local measurements with a hybrid
random Clifford circuit model. Both in 1D and 2D, the
steady state entanglement entropy undergoes a phase
transition from volume law scaling to area law scaling
when the measurement rate exceeds some critical value.
In 2D the transition measurement rate seems to be higher
than 1D due to the increased qubit connectivity at higher
dimensions. We also explored all-to-all coupling where
there is no clear signature of the entanglement phase
transition.

Measurement induced entanglement phase transition
has been interpreted from a quantum error correction
point of view: the scrambling dynamics of the random
unitary circuit effectively protects quantum information
from local measurements??. Additionally, analytic theory



of the entanglement phase transition has been developed
by finding its equivalence with some statistical mechanics
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