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In this paper, we briefly explain and summarize the central concepts of the well-known original
work about Anderson localization1. We first describe the disordered model and how to see the
localization in detailed math. Then we briefly summarize the reasoning Anderson used to give a
generic condition for the absence of the transport in a three dimensional system, without describing
the probability analysis in detail. In the end we will come to the conclusion of the condition for
Anderson localization in three dimensions, which is the ratio of the disorder energy bandwidth and
the interaction strength being larger than a critical value.
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Anderson localization refers to the statement that, for
a disordered system, transport will not happen for some
conditions. In three dimensions, there exists a critical
disorder bandwidth such that if the random disorder is
stronger than the critical value, transport will not be able
to happen and the system will become insulating. In di-
mensions d ≤ 2, localization will always happen for arbi-
trary weak disorder, demonstrated by a scaling theory2.
This is a significant finding providing insights into how
transport properties in real materials can be affected by
defects or impurity. In this paper, we briefly explain and
summarize the derivations Anderson used to determine
the condition for the absence of the transport in a three
dimensional system.

The disordered model can be described by the Hamil-
tonian,

H =
∑
l

EjC
†
jCj +

∑
j,k

VjkC
†
jCk, (1)

where Ej is the energy for a spin on site j. It is a ran-
dom variable distributed with a probability distribution
P (E)dE within a bandwidth W . Vjk is the interaction
term that may be or may not be a random variable with

a probability distribution. Cj and C†j are the Fermion
operators at site j. We know the time evolution of Cj ,

i
∂

∂t
Cj = [Cj , H] (2)

{Cj , C†k} = δjk. (3)

The technique is that we initially place a single spin on
site n at time t = 0, and study the probability of finding
it at site n at a later time t. For temperature T = 0, the
probability amplitude aj(t) of finding a particle on site j
at time t is defined as,

aj(t) = θ(t)〈0|Cj(t)C†n(0)|0〉. (4)

The time evolution of aj(t) thus satisfies

i ∂∂taj(t) (5)

= δ(t)i〈0|Cj(t)C†n(0)|0〉+ θ(t)〈0|[Cj , H](t)C†n(0)|0〉(6)

= δ(t)iaj(t = 0) + θ(t)Ejaj(t) + θ(t)
∑
k 6=j Vjkak(t).(7)

For convenience for the following derivation, we want
aj(t) to be a differentiable function. So we only con-
sider aj(t) in Eq 4 at t ≥ 0 and redefine the behavior of
aj(t = 0−) as following.

aj(t) = 〈0|Cj(t)C†n(0)|0〉. (8)

i
∂

∂t
aj(t) = Ejaj(t) +

∑
k 6=j

Vjkak(t). (9)

And the initial condition is described by

an(t = 0) = 1 (10)

aj 6=n(t = 0) = 0. (11)

Our goal is to obtain 〈aj(t = ∞)〉. We first perform the
Laplace transform of aj(t),

fj(s) =

∫ +∞

0

e−staj(t)dt, (12)

where s is an arbitrary complex number with posi-
tive or zero real part. From the final value theorem,
lims→0+sf(s) = limt→+∞f(t), so we can investigate the
behavior of aj(t = +∞). From Eq. 9, we have

(is− Ej)fj(s) = iaj(t = 0) +
∑
k 6=n

Vjkfk(s) (13)

Here we have used that if aj(t) is a differentiable function,

Laplace transform of
∂

∂t
aj(t) is

∫ +∞
0

e−st ∂∂taj(t)dt =

sfj(t)− aj(t = 0+). So,

fj(s) =
iδjn

(is− Ej)
+

∑
k 6=n

1

(is− Ej)
Vjkfk(s). (14)
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For j 6= n, fj(s) can be expressed in terms of fn(s) as

fj(s) = 1
is−Ej

Vjnfn(s) (15)

+
∑
k

1
is−Ej

Vjk
1

is−Ek
Vknfn(is) + . . . . (16)

And for site n,

fn(s) = i
is−En

+
∑
k

1
is−En

Vnk( Vkn

is−Ek
(17)

+
∑
l

1
is−Ek

Vkl
1

is−El
Vln + . . .)fn(s). (18)

Then we can define Vc(n) as

Vc(n) ≡
∑
k

(Vnk)2

is− Ek
+
∑
k,l

VnkVklVln
(is− Ek)(is− El)

+. . . . (19)

And fn(s) can be expressed as

(1− 1

is− En
Vc(n))fn(s) =

i

is− En
(20)

fn(s) =
1

s+ iVc(n) + iEn
(21)

At the limit of s → 0, the leading order of Vc(n) can be
written as

lims→0

∑
k

(Vnk)2

is−Ek
(22)

= lims→0

∑
k(Vnk)2( −Ek

s2+E2
k
− is

s2+E2
k

) (23)

The first term −∆E(2) ≡ lims→0

∑
k(Vnk)2 −Ek

s2+E2
k

=

−
∑
k

(Vnk)2

Ek
is the second-order perturbation of the en-

ergy at site n. The second term

lims→0

∑
k(Vnk)2 −is

s2+E2
k

(24)

= −iπ
∑
k(Vnk)2δ(Ek)− is

∑
k,Ek 6=0

(Vnk)2

E2
k

(25)

Here we have used that δ(x) = 1
π limε→0

ε
x2+ε2 . We define

the first term −iπ
∑
k(V0k)2δ(Ek) ≡ − i

τ and the second

term is
∑
k,Ek 6=0

(Vnk)2

E2
k
≡ −isK. Obviously if the first

term is non-zero, the second term is indeterminate. If τ
is finite and only the leading order of Eq. 19 is taken into
account, Eq. 17 becomes

fn(s) =
i

is− En
+

(−∆E(2) − i
τ − isK)

is− En
fn(s). (26)

The solution for fn is

fn(s) =
1

s(1 +K) + (1/τ) + i(En −∆E(2))
. (27)

If τ is finite, the contribution from K is neglectable.
Thus,

fn(s) =
1

s+ (1/τ) + i(En −∆E(2))
, (28)

So an(t) = e−t/τ−i(En−∆E(2))t, since∫ +∞

0

e−stan(t)dt =
∫ +∞

0
dte−st−t/τ−i(En−∆E(2))t(29)

= 1
s+(1/τ)+i(En−∆E(2))

. (30)

From the expression of an(t), we know it represents a

state of perturbed energy En −
∑
k

(Vnk)2

Ek
decaying at

the rate ∼ e−t/τ after a long enough time. In the case τ
is infinite,

fn(s) =
1

s(1 +K) + i(En −∆E(2))
, (31)

and

an(t) =
1

1 +K
e−i

En−∆E(2)

1+K t. (32)

The an(t) does not satisfy an(t = 0) = 1, because from
Eq.24 to Eq.25, we take the limit of s to 0 to analyze a(t)
at the limit of t to +∞. So in this case, an(t → +∞)
is reduced from 1 to 1/(1 + K) rather than decaying to
0 at t = +∞, which means the transport can not really
happen. So whether the absence of transfer happens is
determined by the convergence of Im(Vc(n)) as s→ 0 in
Eq. 21. Actually to the leading order, it is already shown
in Eq. 23 that,

Im(Vc(n)) = −s
∑
k

|Vnk|2

s2 + E2
k

∼ −s
∑
j 6=n

|fj(s)|2

|fn(s)|2
. (33)

So this also indicates that finite Im(Vc(n))/s at the limit
of s = 0+ means no real transport.

To determine the condition of Vc(n) to be convergent,
Anderson introduced a probability distribution for terms
in

Vc(n) =
∑
TL (34)

=
∑
j,k,l... 6=n Vnj

1
is−Ej

Vjk
1

is−Ek
Vkl

1
is−El

...Vmn. (35)

The terms here in the expansion should also include re-
peated indices by definition. However, we can eliminate
all of them by including in the energy denominator for
atom k the perturbed energy Vc(k). Specifically, if we
want the term

V03
1

e3
V32

1

e2
V21

1

e1
V10, (36)

we can include the effect from the closed paths with re-
peated indices in ej = is − Ej − Vc(j) (Fig. 1). For
example for this specific path in expression 36, e2 =
is − E2 −

∑
j,k,l 6=0,1 V2j

1
ej
Vjl

1
el
... 1
ek
Vk2. Also here, the

indices in this series can not be repeated and can not
include 0 or 1 which appear before e2 in the expression
36. So,

1

e2
' 1

is− E2
(1 +

∑
j,k,l 6=0,1

V2j
1

ej
Vjl

1

el
...

1

ek
Vk2

1

is− E2
)

(37)
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FIG. 1: Diagram for the expression of Vc(n = 0) in Eq.36.
The blue solid path indicates the term in Eq.36. The purple
dashed path indicates one of the paths whose effect is included
in the denominator of site 2, e2.

Inserting Eq. 37 to expression 36, we can see it includes
the effect from all the repeated indices.

Some unimportant simplification is made as following.
The probability distribution of Ej within the bandwith
W is

P (E) = 1/W for − 1

2
W < E <

1

2
W (38)

P (E) = 0 for |E| > 1

2
W, (39)

Defining average number of terms of length L between
TL and TL + dTL as n(TL)dTL, they come up with n(T )
of the following general form considering different cases:

n(T )dT = [F (κ,W/V )]L
dT

T 2
L(T ) (40)

where L(T ) is a slowly varying function relative to T .
For the following discussion, we assume Vjk is finite only
when j and k are nearest neighbour and it is a constant
Vjk = V for all sites. Using the percolation theory, we
can define

Σ =

κL∑
n=1

(±Tn), (41)

where κ is the connectivity in percolation theory so the
number of nonrepeating paths of length L leading from
any given atom is ∼ κL, considering the lattice only with
near-neighbor connections. So Σ is the sum of the terms
with path of length L. Thus the probability distribution
for Σ is

P (Σ)dΣ ∼ FL(κ,W/V )
dΣ

Σ
L(Σ). (42)

We can define (W/V )0 to satisfy

FL(κ, (W/V )0)L(1) = 1. (43)

From some probability analysis, the paper1 concludes
that if (W/V ) is slightly larger than (W/V )0, the most
probable value of Σ is small of order e−L. And the prob-
ability of Σ = 1 is also of order e−L. For the limit of
L→ +∞, the value of Σ is less than ∼ e−L with a prob-
ability ∼ 1− e−L. But the number of Σ′s only increases
as L. So the series of Eq. 19 can almost always converge
if (W/V ) > (W/V )0, which is the condition for Ander-
son localization to happen in a three dimensional system.
The paper1 also gave a typical estimation (W/V )0 = 26
for K = 4.5 for the simple cubic lattice. Contrary to
three dimensional systems where strong enough disor-
der is needed for electrons to be localized, in dimensions
d ≤ 2, it is proved in a scaling theory2 that localization
always happens for arbitrary weak disorder.
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