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The spectral form factor is yet another manifestation of the connection between Random Matrix
Theory (RMT) and quantum chaos. In this paper, the spectral form factor is reviewed and applied
as a probe in examples of chaotic Floquet systems, with and without classical counterparts.

c©(Jensen Jinhui Wang). The author warrants that the work is the author’s own and that Stanford
University provided no input other than typesetting and referencing guidelines. The author grants
permission to copy, distribute, and display this work in unaltered form, with attribution to the author,
for noncommercial purposes only. All of the rights, including commercial rights, are reserved to the
author.

I. INTRODUCTION

Beginning with the pioneering work by Wigner, Ran-
dom Matrix Theory (RMT) has been a fruitful diagnostic
of quantum chaos. Wigner originally proposed RMT as
a statistical description of the spectra of large atomic
systems, whose interactions are so fascinatingly com-
plex that they can essentially be treated as ensembles
of random Hamiltonians drawn from a class respecting
the symmetries of the problem. Surprisingly, such an ap-
proach works even for single-particle systems with chaotic
classical analogues. In this paper, we will review a quan-
tity, known as the spectral form factor, which has been
successfully applied to probe quantum chaos in systems
with and without classical analogues. Before we proceed
with the main topic of Floquet systems, we first provide
motivation based on time-independent systems. Given
a time-independent Hamiltonian H with non-degenerate
eigenspectrum {Ej}, the spectral density is

ρ(E) =
∑
j

δ(E − Ej) (1)

The spectral form factor K(t) is then defined as the
Fourier transform of the autocorrelator of the spectral
density over different “energy distances”.

K(t) =

∫
e−

iεt
~

(〈
ρ
(
E +

ε

2

)
ρ
(
E − ε

2

)〉
E
− ρ̄2

) dε
ρ̄
(2)

where ρ̄ = 〈ρ(E)〉E and 〈·〉E means taking the average
over an energy shell centered at E of a window ∆E satis-
fying ρ̄∆E � 1 such that the shell contains many energy
levels. One easily obtains from the definition

K(t) =
1

|W(E)|
∑

Ei,Ej∈W(E)

e−
i
~ (Ei−Ej)t − ~ρ̄δ(t) (3)

whereW(E) is the set of energies in
[
E − ∆E

2 , E + ∆
2

]
.

To identify its long-term behavior, define the Heisenberg

time tH = 2π~ρ̄. Observe that or t� tH , the phases Eit
~

essentially become random (recall that ρ̄ is the average
inter-energy spacing) such that for large system sizes and
thus |W(E)|, the cross-terms where Ei 6= Ej become zero
due to dephasing while only the cases Ei = Ej contribute
to the sum. Hence, K(t) → 1 as t → ∞. As a last re-
mark, to allow comparison between different ensembles,
the energy levels are usually rescaled such that the aver-
age spacing becomes ρ̄ = 1. The typical behavior of K(t)
at times larger than a time-scale known as the Thouless
time t∗, after which universality is expected to set in, is
depicted in Fig 1.

FIG. 1: Typical behavior of the spectral form factor K(t) for
t � t∗ where t∗ is the Thouless time. In the above, tH is the
Heisenberg time.

II. RANDOM MATRIX THEORY

Now, the agenda of RMT in quantum chaos is to clas-
sify Hamiltonian ensembles into universality classes as-
sociated with predetermined random matrix ensembles
based on metrics such as K(t), as the system size tends
to infinity. In such stochastic set-ups, we instead consider
the ensemble average:

K̄(t) = 〈K(t)〉ens (4)

One might think that this additional ensemble average
is unnecessary as the system size is increased to infinity
(intuitively, there will be more and more energies) but the
spectral form factor is unfortunately not self-averaging.
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The next order of business is to then compute K̄(t) for
select random matrix ensembles which have the potential
to be universality classes. Usually the considered ensem-
bles lead to K(t)’s that are independent of the central
energy E such that we can perform the sum in Eqn 3
over all eigenvalues to yield (dropping the δ)

K̄(t) = lim
N→∞

1

N

∑
i,j

∫
e−i(λi−λj)tDλ (5)

where Dλ = P (λ1, ..., λN )dλ1...dλN is the joint distri-
bution of {λj} determined by the ensemble the N × N
matrices are drawn from. It turns out for the well-studied
General Orthogonal Ensemble (GOE) and General Uni-
tary Ensemble (GUE),

K̄GOE(t) =

{
2t− t ln(1 + 2t) t ≤ 1

2− t ln
(

2t+1
2t−1

)
t ≥ 1

(6)

K̄GUE(t) =

{
t t ≤ 1

1 t ≥ 1
(7)

whose proofs2 are rather involved. The well-known
universality classes ascribed to the GOE and GUE are
chaotic systems with and without time reversal symmetry
respectively. However, for a Poissonian ensemble, which
is expected to model integrable systems, one easily sees∑

i,j

∫
e−i(λi−λj)tDλ = δij (8)

since if i 6= j, the random vector e−i(λi−λj)t sweeps out
a circle in the Argand plane with uniform probability for
varying λi − λj , resulting in no net contribution. Thus,

K̄Poisson(t) = 1 (9)

The different forms of K̄(t) hence enables us to dis-
tinguish between chaotic and integrable systems. The
ensembles that describe the class of chaotic Floquet sys-
tems with and without time reversal symmetry are the
Circular Orthogonal Ensemble (COE) and Circular Uni-
tary Ensemble (CUE) whose spectral form factors2 turn
out to be the same as those of GOE/GUE for t < tH ,

K̄COE(t) = 2t− t ln(1 + 2t) = 2t− 2t2 +O(t3) (10)

K̄CUE(t) = t (11)

III. SPECTRAL FORM FACTORS FOR
FLOQUET SYSTEMS

In the context of a Floquet system which has a time-
dependent albeit periodic Hamiltonian H(t) = H(t+ τ),

energy levels are not meaningful since the Hamiltonian is
changing. As such, we redefine the spectral form factor
in the following manner. Denoting U as the propagator
over a single period τ , we can exploit its unitarity to
decompose U =

∑
n e
−iφn |n〉 〈n| where N = {φn} are

eigenphases. The corresponding spectral density is then

ρ(φ) =
2π

|N |
∑
n

δ(φ− φn)

where the leading coefficient ensures 〈ρ〉 =
1

2π

∫ 2π

0
ρ(φ)dφ = 1. Then, we define the rescaled

spectral form factor K(t) for t ∈ Z as

K(t) (12)

=
|N |2

2π

∫ 2π

0

e−iθt
(〈

ρ

(
φ+

θ

2

)
ρ

(
φ− θ

2

)〉
− 〈ρ〉2

)
dθ

〈ρ〉
(13)

=
∑

φi,φj∈N

e−i(φi−φj)t − |N |2δt,0 (14)

= tr(U t)tr(U−t)− |N |2δt,0 (15)

where we have averaged over all eigenphases now, in
anticipation that the result will be independent of the
window of eigenphases considered after the subsequent
ensemble average.

K̄(t) = 〈tr(U t)tr(U−t)〉ens − |N |2δt,0 (16)

The goal of this paper is then to review how the spec-
tral form factors, defined by Equation 16, for specific
quantum chaotic Floquet systems studied by Kos et al.1

agree with Equations 10 or 11 (depending on their sym-
metry classes) up to first order in t. Note that the Heisen-
berg time in this case is tH = |N |.

IV. FLOQUET SYSTEMS WITH CHAOTIC
CLASSICAL COUNTERPARTS

Firstly, we consider a Floquet system with a chaotic
classical analog. From the path integral formulation, one
obtains

tr(U t) =

∫
ψ(0)=ψ(t)

e
iS(ψ)

~ Dψ (17)

where the sum is performed over all paths with period
t. Now, taking the semi-classical limit h → 0, the main
contributions to the path integral are those due to sta-
tionary actions, which precisely correspond to classical
paths. Thus,

tr(U t) ≈
∑
p

Ape
i
Sp
~ (18)
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where the sum is performed over classical paths p that
have period t. The coefficient |Ap|2 loosely represents
how long a random path tends to stay on the periodic
path p and obeys the Hannay-Ozorido de Almeida sum
rule3

∑
p |Ap|2 = t due to classical ergodicity, for times

t � tH but large enough for ergodicity to set in. This
is because periodic paths are dense in a classical ergodic
system such that the sum of times spent by an arbitrary
path along periodic paths must yield the total time t of
that path. Thus, we have for t� tH ,

K̄(t) =

〈∑
p,p′

ApA
∗
p′e
−i

Sp−Sp′
~

〉
ens

(19)

Now, for general systems without any symmetries, only
diagonal terms where p′ = p contribute in the above
average in light of the random phase factors. Then,
K̄(t) =

∑
p |Ap|2 = t for t � tH . Otherwise if the

system possesses time reversal symmetry, letting p̄ de-
note the time-reversed path corresponding to p, we have
Ap̄ = Ap and Sp = Sp̄ such that for a fixed p in the
above average, both p′ = p and p′ = p̄ contribute such
that K̄(t) =

∑
p 2|Ap|2 = 2t. Hence, we recover the short

term behaviors in Eqns 10 and 11.

V. CHAOTIC FLOQUET SPIN SYSTEM

In this section, we consider a chaotic Floquet system
with no classical analog. For a spin- 1

2 system with l sites,

define Pauli spin operators {σ(α)
x } where α ∈ {1, 2, 3} is

the direction of the Pauli matrix and x ∈ {1, ..., l} de-
scribes the site it acts on. Consider the periodic Hamil-
tonian (with unit period)

H(t) = H0 +H1

∑
m∈Z

δ(t−m) (20)

where H0 represents a many-body-localized system

with l-bits {σ(3)
x } while H1 represents on-site fields of

strength h that act as the driving force.

H0 =
∑
x

J1
xσ

(3)
x +

∑
x<x′

J2
x,x′σ

(3)
x σ

(3)
x′ + ... (21)

H1 = h
∑
x

σ(1)
x (22)

Recall that the l-bits are induced by the underlying
disorder hidden in H0 such that the coefficients J ix’s are
random. Note that H exhibits time-reversal symmetry
since it is real. In this scenario, the propagator over the
unit period (in units ~ = 1) is given by

U = T exp
(
−i
∫ 1

0

H(t)dt

)
= e−iH1e−iH0 (23)

where we have used the fact that H(t) = H0 for t ∈
(0, 1) before experiencing a kick by H1 at t = 1. Denote

V = e−iH1 =
(
e−ihσ

(1)
)⊗l

= v⊗l (24)

where

v = e−ihσ
(1)

=

(
cosh i sinh
i sinh cosh

)
(25)

since (σ(1))2 = I. Now, let {|s〉} denote the set of 2l

joint eigenstates of σ
(3)
x such that σ

(3)
x |s〉 = (−1)sx |s〉

if |s〉 = (s1, s2, ..., sl) where sx ∈ {0, 1}. That is, {|s〉}
are the product spin up/down states with respect to the

dressed operators {σ(3)
x }. Letting W = e−iH0 such that

U = VW , we have

W |s〉 = e−iθs |s〉 (26)

θs =
∑
x

J1
x(−1)sx +

∑
x<x′

J2
x,x′(−1)sx+sx′ + ... (27)

Meanwhile, the matrix elements of V with respect to
{|s〉} factorize due to the tensor product structure of V .

〈s|V |s′〉 =

l∏
i=1

vsx,s′x (28)

Armed with these relationships, we are now ready to
compute the spectral form factor by repeatedly inserting
identities

∑
sτ
|sτ 〉 〈sτ | = 1. Firstly,

tr(U t) = tr(VWVW...) (29)

=
∑

s1,...,st

〈s1|VW |s2〉 〈s2|VW |s3〉 ... 〈st|VW |s1〉

(30)

=
∑

s1,...,st

e−i
∑t
τ=1 θsτ

l∏
x=1

t∏
τ=1

vsx,τ ,sx,τ+1
(31)

where we have identified t+ 1 with 1 such that

K̄(t) =
∑

s1,...,st

∑
s′1,...,s

′
t

〈
e
−i
∑t
τ=1

(
θsτ−θs′τ

)〉
ens

×
∏̀
x=1

t∏
τ=1

vsx,τ ,sx,τ+1v
∗
s′x,τ ,s

′
x,τ+1

(32)

Now, to leading order, due to the random phases in
the ensemble average, we have
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〈
e
−i
∑t
τ=1

(
θsτ−θs′τ

)〉
= δ〈s1,...,st〉,〈s′1,...,s′t〉 (33)

where 〈s1, . . . , st〉 represents a lexicographically or-
dered string of words s1, ..., st. Note that the Kronecker-
delta is between entire sorted lists since we only need∑t
τ θsτ =

∑t
τ θs′τ for the phases to cancel. Finally, for

t � tH = 2l, we can also see that the dominant num-
ber of strings s1, s2, ..., st are such that no two words are
repeated, by elementary combinatorics. Thus, to obtain
the leading order effect, we just have to consider the cases
where there exist some π ∈ St (St being the permutation
group acting on t elements) such that s′τ = sπ(τ). Thus,

up to a O
(
t
2l

)
correction,

K̄(t) =
∑
π∈St

Zlπ (34)

where

Zπ =
∑
s1...st

t∏
τ=1

vsτ ,sτ+1
v∗sπ(τ),sπ(τ+1)

(35)

Now, it turns out that to yet another O
(
t
2l

)
correction,

we just have to consider π ∈ St such that for all s1, .., st,

t∏
τ=1

vsτ ,sτ+1
=

t∏
τ=1

v∗sπ(τ),sπ(τ+1)
(36)

These are precisely the cyclic permutations π : τ →
τ+k for some 0 ≤ k ≤ t−1 and anti-cyclic permutations
π : τ → t+ 1− τ − k for some 0 ≤ k ≤ t− 1 for a total of
2t such permutations. In these cases, Zπ can evaluated
in an Ising-like fashion by defining the transfer matrix
Tss′ = |vss′ |2.

T =

(
cos2 h sin2 h
sin2 h cos2 h

)
(37)

Then, applying Eqn 36,

Zπ =
∑
s1...st

t∏
τ=1

|vsτ ,sτ+1
|2

=
∑
s1...st

〈s1|T |s2〉 〈s2|T |s3〉 ... 〈st|T |s1〉

= Tr(T t)

= 1 + (cos 2h)t

where we have used the fact that the eigenvalues of T
are 1 and cos 2h = cos2 h − sin2 h in computing Tr(T t).
Hence,

K̄(t) = 2t
[
1 + (cos 2h)t

]l
+O

(
t

2l

)
(38)

≈ 2t for t� t∗ (39)

with the Thouless time being

t∗ = − ln l

ln cos 2h
(40)

which agrees with Eqn 10. It should be remarked that
for higher-order corrections, one needs to perform a care-
ful accounting1 of other permutations π as well as other
strings s1, ..., st with duplicates.

The numerous approximations made in this section are
summarized as: 1) the same-phase approximation in Eqn
33 which ignored fluctuations, 2) the restriction to strings
with no repeated words in Eqn 34 and, 3) the restriction
to strings obtained from cyclic and anti-cyclic permuta-
tions of distinct words.

VI. CONCLUSION

All-in-all, we have demonstrated how the spectral form
factor can be an adept probe of quantum chaos in Floquet
systems with and without classical counterparts.
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