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Here, I review characteristic behaviors of operator spreading, out-of-time correlators, and entan-
glement growth in three different models defined on one dimensional spin chains: the Haar-random
unitary circuits, the kicked Ising model, and the fractal Clifford circuits. In the Haar-random uni-
tary circuits, mapping from the problem of studying the operator spreading to the random walk
allows one to derive many results analytically. The analytical results indicate that operators spread
hydrodynamically with velocity and diffusion constant set by microscopic details. Using this re-
sult, one can also derive that entanglement entropy grow linearly and that out-of-time correlators
grows sharply, albeit not exponentially, in the regime set by the velocity of the operator hydro-
dynamics. I discuss how the similar behaviors are manifest in the kicked Ising model. This leads
to the conjecture that the behaviors shown in the random unitary circuits are universal in a wide
class of one-dimensional models. Meanwhile, the fractal Clifford circuit provides an example of a
one-dimensional system whose behaviors are significantly different from the ones of the two afore-
mentioned models although operators do spread in the late time in the fractal Clifford circuit as
well.
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I. INTRODUCTION

In recent years, there has been great interest in how to
characterize quantum chaos. This is certainly an interest-
ing and important problem that had not been in limelight
for a while. However, its recently discovered relation to
the black hole physics and the progress in understand-
ing the physics of the many-body localized systems and
non-equilibrium systems brought the subject its deserved
attention.

In the classical mechanics, the terminology that char-
acterizes the key feature of chaotic feature is the butterfly
effect. A small difference in the initial condition leads to
exponentially large difference in outcome in late time –
this is how a snap of wings that a butterfly makes in Bei-
jing causes hurricane on the other side of the world. In
more mathematical language, such extreme sensitivity to
the initial conditions can be expressed as the following:∣∣∣∣∂x(t)

∂x0

∣∣∣∣2 = |{x(t), p(0)}|2 ∼ e2λt (1)

Here, the bracket refers to the Poisson bracket; x0 refers
to the initial condition; λ is an exponent called Lyapunov
exponent. In the classical chaotic systems, the extreme
dependence on initial conditions and the existence of the
Lyapunov exponent that characterizes the sensitivity is
a statement established in mathematical sense.

How can we characterize quantum chaos? One way
is to generalize the classical picture by applying a naive

canonical quantization, i.e., replacing position and mo-
mentum with the corresponding Hermitian operators and
replacing the Poisson bracket with commmutators. Ap-
plying this to the rhs of the Eq. (1) lead to quantities
dubbed the out-of-time correlators CV,W (t):

CV,W (t) = 〈[V (t),W ][V (t),W ]†〉 (2)

The stream of thoughts that leads to the out-of-time cor-
relators as the relevant quantities in the diagnosis of
quantum chaos was admittedly naive. However, it is
shown that in systems such as black holes and in the
SYK model (for example, see1 and2), the out-of-time cor-
relators do grow exponentially in the certain time regime
with the Lyapunov exponents characteristic to the sys-
tems.

As for the quantities that are more inherent to quan-
tum mechanics, one can track how a localized operator,
in the Heisenberg picture, spreads out in the late time.
The process of a localized operator evolving into an op-
erator having a global effect on a system captures the
notion of quantum scrambling. Alternatively, one may
harness some of the quantities in quantum information
theory. In particular, the time evolution of the von Neu-
mann entropy

S1,A(t) = −Tr[ρA(t) log ρA(t)] (3)

and the Renyi entropy, occasionally computationally
more convenient than the von Neumann entropy:

Sn≥2,A(t) =
1

n− 1
log Tr[ρnA(t)] (4)
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characterizes how degrees of freedom in the subsystem
A become strongly entangled with the rest of degrees of
freedom in the system. The increase in the entanglement
entropy indicates that the larger degrees of the “spooky
action in the distance”, leading to the dramatic global
effect on the system even if the system might be modified
locally at the early time.

There are indeed good pictures of how the quantities
mentioned so far should be related to quantum chaos.
However, contrary to the classical cases in which the exis-
tence of Lyapunov exponents characterize how classically
chaotic systems behave, there is no a priori statement
about what is the universal behavior of these quantities
in quantum chaotic systems or whether even there is such
a universal behavior. For example, when we are consid-
ering the systems with the concept of locality baked in
(for example, any local lattice models in one dimension or
higher), it is known that Lyapunov exponent is a tricky
concept to define3.

The goal of this paper is to review the contents of von
Keyserlingk et al. 4 (there is a closely related paper5 with
some complementary viewpoints and results in higher di-
mension as well). In von Keyserlingk et al. 4 , the above
quantities in three different models of one-dimensional
quantum spin chains are studied. Studying these model
shed light on some of the questions about the diagnos-
tics of quantum chaos. While none of the systems they
studied have exponential increase in out-of-time correla-
tors as expected from classical systems and as in some
of quantum system, there exists sharp increase in out-of-
time correlators and entanglement entropy in the two of
the systems. Interestingly, many of such behaviors can
be traced from the fact that operators spread in hydrody-
namical manner. Meanwhile, the other system provide
the counterexample in which the quantities of our inter-
est behave differently from the two models.

In Sec. II, the basic setup and the three models ana-
lyzed in the paper – the Haar-random unitary circuits,
the kicked Ising models, and the fractal Clifford circuits
are introduced. In Sec. III, I will give a detailed introduc-
tion to the analytical result in the random unitary cir-
cuits. I will finish with how the behaviors derived from
the random unitary circuits apply to the kicked Ising
models and the fractal Clifford circuits in Sec. IV.

II. MODELS AND METHODOLOGY

In this section, I specify the models and the quantities
that characterize scrambling and chaos studied in4

A. Basic Setup

The basic setup common to the all three models is that
we start with a one-dimensional chain of length L, and at
each site we have a clock variable with q possible states.
I will introduce some notations and facts that would be

helpful in the future discussion. The two basic one-site
operators that act on the clock variable at site i (with
−L2 + 1 ≤ i ≤ L

2 . I am taking i = 0 to be at the center
of the chain to make the bookkeeping easier later in the
paper) are:

Zi =



1 0 0 · · · 0

0 e
2πi
q 0 · · · 0

0 0 e
4πi
q · · · 0

...
...

...
. . .

...

0 0 0 · · · e
2(q−1)πi

q

 (5)

Xi =


0 1 0 0 · · · 0
0 0 1 0 · · · 0
0 0 0 1 · · · 0
...

...
...

. . .
...

1 0 0 0 · · · 0

 (6)

Note that XiZi = e2πi/qZiXi. Xi rotate clock variables,
and Zi “signals” which clock variable state at site i is in
by returning different q root of unities according to the
current clock variable state. Note that Xi and Zi are
natural generalizations of Pauli matrices σx and σz at
q = 2 to other integers.

Any one site operator can be represented as a linear
combination of

Oµi = Z
µ
(Z)
i

i X
µ
(Z)
i

i , (7)

µi = (µ
(Z)
i , µ

(X)
i ) being a pair of two Zq numbers. In

other words, {Oµi} forms an orthonormal basis of the
linear space of one-site operators. Similarly, one may
define

µ = (µ−L2 +1, µ−L2 +2, µ−L2 +3, · · ·µL2 ) (8)

µ is an array of µi for all possible i’s, and each µi, as

before, is a pair of two Zq numbers µ
(Z)
i and µ

(X)
i . Then,

one can define

Oµ =

L
2⊗

i=−L2 +1

Oµi (9)

{Oµ} forms an orthonormal basis of all operators on the
1D chain. I will occasionally refer Oµ as a Pauli string
because it is a direct product of the generalized Pauli
matrices.

A choice of models refers to a choice of time evolution
operators of the 1D spin chain. In this work, time evo-
lution operators are defined by quantum circuits, each
circuit element representing a local unitary transforma-
tion that gives time evolution of a state after a discrete
time step.

From the given time evolution, I would be interested
in accessing the following quantities to characterize quan-
tum chaos:
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1. ρR(s, t): ρR(s, t) is a function of a spatial index s
and a time t that contains information about how
the right end of an operator Zi=0(t) evolves. To
define this quantity more precisely, let me write
the Heisenberg representation of Z0 at time t as:

Z0(t) =
∑
ν

aν(t)Oν (10)

{aν(t)} contains the full information about how Z0

evolves in time. Additionally, define

η(µ) = (min i that satisfies µj = (0, 0) for any j ≥ i )
(11)

Note that Oµ acts trivially on all sites on the right
of η(µ). Physically, η(µ) denotes “the right end” of
the operator Oµ. Hence, once I define ρR(s, t):

ρR(s, t) =
∑
ν

|aν(t)|2δη(ν)=s (12)

it is clear that ρR(s, t) quantifies how the right end
of the time-evolved operator Z0(t) behaves.

2. The out-of-time correlator; more specifically,

C(s, t) = CZs,Z0
(t) (13)

3. The growth of entanglement entropy and Renyi en-
tropy Sn,A(t), taking the initial state at t = 0 to be
a product state.

B. The Haar-Random Unitary Circuit

The time evolution in this model can be written as:

|ψ(t+ 1)〉 =

∏
j

U
(2)
j,t

∏
j

U
(1)
j,t

 |ψ(t)〉 (14)

where U
(2)
j,t ’s(U

(1)
j,t )’s) are Haar-random U(q2) matrices

acting on site 2j − 1 and 2j (site 2j and 2j + 1)
respectively? . One may imagine the time evolution of
the model as a set of unitary local transformations drawn
in Fig. 1, each rectangle corresponding to a U(q2) Haar-
random matrix.

One important consequence of the geometry shown in
Fig. 1 is the existence of the light-cone. A operator local-
ized at a single site cannot spread beyond the light-cone
illustrated as two dotted lines in Fig. 1. When starting
from the operator localized at the site i = 0, the light-
cone corresponds to the region between s = t and s = −t
lines. The light-cone defines a natural “speed of light”
vLC = 1.

Remarkably, we will see in the next section that many
of the quantities that we are interested in can be com-
puted analytically in this setup.

FIG. 1: The arrays of local unitary circuits and the
light cone in the Haar-random unitary circuits and the

kicked Ising model

C. The Kicked Ising Model

The time evolution of the Kicked Ising model is given
by the following time-dependent Hamiltonian with q = 2:

H(t) =

{∑
i ZiZi+1 + h

∑
i Zi 0 < t < T

2

g
∑
iXi

T
2 < t < T

, H(t) = H(t+T )

(15)
The time evolution of the system can be alternatively
written as the following series of local unitary transfor-
mations:

T e−i
∫ T
0
H(t)dt =

∏
j

U
(j)
4

∏
j

U
(j)
3

∏
j

U
(j)
2

∏
j

U
(j)
4


(16)

With

U
(j)
4 = ei

gT
4 (X2j+X2j+1)

U
(j)
3 = ei

gT
4 (X2j−1+X2j)

U
(j)
2 = ei

T
2 (Z2jZ2j+1+hZ2j+hZ2j+1)

U
(j)
1 = ei

T
2 (Z2j−1Z2j)

(17)

Note that U
(j)
1 and U

(j)
3 are two-site local unitary gates

acting on the site 2j − 1 and 2j; similarly, U
(j)
2 and U

(j)
4

are two-site local unitary gates acting on the site 2j and
2j+1. Hence, this model may be understood as a special
example of unitary circuits with the geometry in Fig. 1.
Hence, the statement about the existence of the light-
cone applies here as well.
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In this model, there are few things that can be figured
out analytically. However, using the algorithm called
Time-Evolving Block Decimation (TEBD)6, a power-
ful tool that allows one to compute time evolution of
1D chains based on the tensor network formalism, one
can compute many quantities of our interest numerically.
This will allow comparison to the analytical results ob-
tained from the Haar-random unitary circuits.

D. The Fractal Clifford Circuits

Clifford circuits are defined as unitary circuits with
q = 2 whose unitary time evolution operators of the
whole system are in the Clifford subgroup of the full uni-
tary group. The Clifford group is defined as a subgroup
of the full unitary group that maps each Pauli string to
a different Pauli string, rather than to a linear combina-
tion of Pauli strings as elements of the full unitary group
generically do.

There is vast literature on Clifford circuits, especially
when they are translationally invariant and go by the
name Clifford quantum cellular automata. Hence, one
can borrow some insight from the already existing liter-
ature to analyze them. In particular, it is known that
in one-dimensional translationally invariant Clifford cir-
cuits, the time evolution of Pauli strings reduces to either
of these three behaviors: (i) periodic in time (ii) time-
glide or (iii) fractal7. If the operator evolution is periodic
in time or time-glide, there is clearly no operator spread-
ing or scrambling of information, and such choice is not
suitable for the purpose of the study.

Meanwhile, the time evolution given by a Clifford cir-
cuit can be “fractal” in the following sense: One can track
the time evolution of a localized Pauli string by marking
each site at time t when the time-evolved Pauli string at
time t acts non-trivially on the sites. Then, the mark-
ing of the sites as t increases have a fractal pattern. In
such time evolution, there is clearly a notion of opera-
tor spreading and scrambling. Hence, the fractal Clifford
circuits are the natural types of Clifford circuits to study
if one is interested in scrambling and quantum chaos.
Recall that the classification of Clifford circuits I men-
tioned heretofore is only established for translationally
invariant circuits. Hence, by saying that I am interested
in the fractal Clifford circuits, I am restricting myself to
translationally invariant circuits.

Finally, I want to make a remark that Clifford circuits
can be efficiently simulated on classical computers8 de-
spite being quantum circuits. Hence, when one wants to
compute quantities that no theorems from quantum in-
formation theory provides guidance, one can always re-
sort to numerics.

III. ANALYTICAL RESULTS FROM THE
RANDOM UNITARY CIRCUITS

In this section, I will review analytical results derived
from the Haar-random unitary circuit. The key result
is in Sec. III A where the time evolution of ρR(s, t) is
mapped to biased random walk and the analytically ex-
act formula for ρR(s, t) can be obtained. Out-of-time
correlators and n = 2 Renyi entropies can be also com-
puted from the quantity ρR(s, t).

A. Analytical Results on ρR(s, t)

We will be primarily interested in computing ρR(s, t),
the overline denoting average over all possible random
unitaries. Note that by definition,

ρR(s, t = 0) = δs=0 (18)

To study ρR(s, t 6= 0), let me study in detail how the ran-
dom unitary transformation acting on site s and s+1 in-
duces the recursion relation between ρR(s, t) at different
time.

Pauli strings that contribute to ρR(s, t) acts non-
trivially on s but trivially on s + 1. Also, there are
q4 − 1 possible combinations of pauli matrices that act
on s or s+1 non-trivially (Note that the condition “non-
trivially” explicitly excludes identity matrix, hence −1 to
q4). Among them, q2 − 1 choices act trivially on s + 1;
q2(q2 − 1) choices act non-trivially on s + 1. Thanks
to the Haar-random distribution of the unitary gates,
upon averaging over all unitary transformations, Pauli
strings that contribute to ρR(s, t) are transformed to any
of q4−1 Pauli strings that act non-trivially on either site
s or s+ 1 with equal weight. Hence, ρR(s, t) contributes

to ρR(s, t+ 1) and ρR(s+ 1, t+ 1) as:

ρR(s, t+ 1) =
1

q2 + 1
ρR(s, t) + other dependence

ρR(s+ 1, t+ 1) =
q2

q2 + 1
ρR(s, t) + other dependence

(19)

One can similarly show how ρR(s+ 1, t) is related to

ρR(s, t+ 1) and ρR(s+ 1, t+ 1). Additionally, since the
unitary transformation only acts on s and s+ 1, it is im-
possible for ρR’s at other sites contribute to ρR(s, t+ 1)

and ρR(s+ 1, t+ 1). Hence, one can show that a random
two-site unitary transformation acting on site s and s+1
at time t induces the following recursion relation:

ρR(s, t+ 1) =
1

q2 + 1

(
ρR(s, t) + ρR(s+ 1, t)

)
ρR(s+ 1, t+ 1) =

q2

q2 + 1

(
ρR(s, t) + ρR(s+ 1, t)

) (20)

Considering the geometry of the circuits in which uni-
tary transformation act on sites in an alternating manner,
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introducing

ρ̃R(x, t) = ρR(2x− 1, 2t) + ρR(2x, 2t) (21)

ρ̃R(x, t) obeys the following local recursion relation:

ρ̃R(x, t+1) = p1ρ̃R(x−1, t)+p2ρ̃R(x, t)+(1−p1−p2)ρ̃R(x+1, t)
(22)

where p1, p2 is defined as:

p1 =
2q2

(q2 + 1)2
, p2 =

q4

(q2 + 1)2
(23)

By deriving this recursion relation, we mapped the com-
puting ρ̃R(x, t+1) to that of the random walk – an object
at the coordinate x and time t, after unit time, has p1
probability to move to the right, p2 probability to stand
still, and (1 − p1 − p2) probability to move to the left.
Note that the probability to move to the right is large
than the probaiblity to move to the left – as expected
how the right end of the time-evolved operator move.

One can find an analytical expression satisfying
the above recursion relation and the initial condition
Eq. (18). It is given by:

ρ̃R(x, t) =
q2(t+x)

(1 + q2)2t
(2t)!

(t+ x)!(t− x)!
(24)

While the above expression and various approximations
of the above result can be useful in deriving analytical
formulae for other quantities, a particularly insightful ex-
pression in this subsection is obtained by taking the limit

x, t→∞ with x
t ≈ vB = q2−1

q2+1 nearly fixed. In this limit,

ρ̃R(x, t) ∼ e
− (x−vBt)

2

(1−v2
B

)t (25)

The following are the key lessons from the above ex-
pression:

• The right end of the operator, roughly speaking,

moves with the group velocity vB = q2−1
q2+1 . The two

important features about vB is that it depends on
microscopic detail (in the case of the random uni-
tary circuits, q) rather than is fixed to some univer-
sal constant and that it is generically smaller than
the light-cone velocity vLC = 1

• the right end of the operator has a Gaussian shape
whose width W ∼

√
t

The above bullet points are illustrated in Fig. 2

B. Comment on Hydrodynamics

Here, I briefly comment on how the time evolution of
ρR(s, t) can be connected to hydrodynamics. Hydrody-
namical behaviors arise when there are continuous sym-
metries and therefore the associated conserved quantities.

FIG. 2: The evolution of the operator “wavefront” as
indicated by Eq. (25). The two ends of the operators
move with butterfly velocity vB ; the both ends are

“fuzzed” in the shape of the Gaussian function, whose
width scales like

√
t.

Hence, the natural macroscopic variable is the density of
the conserved quantity ρ(~x, t). Then the conservation
law

∂tρ(~x, t) + ~∇ · ~J(~x, t) = 0 (26)

along with the constitutive relation that relates the con-

served current ~J(~x, t) to the local density associated with
local density:

~J(~x, t) ∼ α~f(~x, t)ρ(~x, t) + β∇ρ(~x, t) + · · · (27)

The usual assumption is that the perturbation of the
macroscopic variables from the equilibrium values is long-
wavelength and small enough that the derivative expan-
sion is valid. Hence the dots in the above equations con-
tain terms higher in the derivative that are expected to
be relatively unimportant. The coefficients α and β are
determined by the microscopic details. Hydrodynamics
arises in (of course, as the name suggest) fluid dynamics
and electronic transport in graphene9.

The statement that the operator spreading is hydro-
dynamical in the random unitary circuit is somewhat
counter-intuitive because there is no conserved quantity
in the system; note that even energy is not conserved
quantity in the model. However, note that∑

x

ρR(x, t) = 1 (28)

Hence, ρ̃R(x, t) can be thought as density of the emer-
gent conserved quantity

∑
x ρR(x, t). Then, invoking the

constitutive relation

J(x, t) = vB ρ̃R(x, t) +

√
1− v2B

2
∂xρ̃R(x, t) + · · · (29)

gives the behavior found in in Eq. (25).
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C. Out-of-time correlators and Entanglement
entropies

One can also obtain analytical expression for the
random-unitary-averaged out-of-time correlators and
n = 2 Renyi entropy when the random average is taken
as? :

S2,A(t) = − log e−S2,A(t) (30)

i.e., taking random-unitary-average of e−S2,A(t) and tak-
ing the logarithm.

However, both the derivations and the expressions are
quite complicated and technical. Hence, I chose to sim-
ply summarize the key features of the results here rather
than explicitly working through the derivations. The out
of time correlators and the n = 2 entropy exhibit the
following behaviors:

• Outside the light-cone, i.e. s > t, the out-of-time
correlator C(s, t) = 0. However, as one gets inside
the light-cone, C(s, t) acquires non-zero value and
start to increase. C(s, t) experience sharp increase
near s = vBt, but the increase is neither exponen-
tial nor characterized by the Lyapunov exponents
as in some of quantum systems are shown to be. Af-
ter the sharp increase, , deep inside the light-cone,
C(s, t) saturates to 1.

• The Renyi entropy grows linearly with a slope
vE < vB then saturates to an equilibrium value.
The reason that the speed of the entanglement
growth is slower than vB is attributed to the Gaus-
sian broadening of ρR(x, t).

IV. COMPARISON TO THE OTHER MODELS

In this section, I will discuss how the behaviors derived
in the previous section is manifest or absent in the kicked
Ising model and the fractal Clifford circuits. The origi-
nal paper4 presents numerical studies of the kicked Ising
model using TEBD, focusing on ρR(s, t) and out-of-time
correlators. The numerical results indicate that the be-
haviors summarized at the end of each subsection in the
previous section are manifest in the kicked Ising model
as well.

It would be more insightful to discuss the behaviors of
out-of-time correlators and ρR(s, t) in more detail. Simi-
larly to the Haar-random unitary circuits, the behaviors
of out-of-time correlators and ρR(s, t) allow them to set
the velocity vB at which the local operators spread. In
the case of the kicked Ising model, similarly to the ran-
dom unitary circuits, vB is smaller than the light-cone

velocity, but vB is not equal to q2−1
q2+1 (recall that in the

kicked Ising model, q = 2): Instead, vB is some non-
universal number that can be tuned by changing the x-
field strength g. This suggests the point I made in the
earlier section that vB is not universal and dependent on

microscopic details. Also, the sharp increase of out-of-
time corrrelator around s ≈= vBt is also observed.

Additionally, they study the width of the Gaussian
wavefront manifest in Eq. (25) by studying

σ(t) =

√√√√∑
s

s2ρR(s, t)−

(∑
s

ρR(s, t)

)
(31)

and extract that σ(t) has a power law dependence ∼
tα with α close to 0.5. Note that the kicked Ising
model is spatial-translation-invariant and discrete time-
translation-variant, while the random unitary circuits
break all the symmetries present in the kicked Ising
model. However, the fact that the kicked Ising model
shows similar behaviors suggest that the behaviors we
derived in the earlier section are universal in a large class
of 1D systems. Such “universality class” seems to be dis-
tinct from the ones that SYK models and black holes
belong to since the 1D models studied here do not have
a clearly defined Lyapunov exponent from out-of-time-
correlators. Finally, the paper noted that there is a recent
result where the similar hydrodynamic behaviors are ob-
served in the time evolution from the static Hamiltonian
as well10, further supporting the idea of the universality
class of quantum chaos.

Meanwhile, ρR(s, t) and out-of-time correlators behave
very anomalously in the fractal Clifford circuits. Recall
that the fractal Clifford circuits map Pauli strings to dif-
ferent Pauli strings under time evolution. Hence, ρR(s, t)
is always fixed to be 1 or 0. Since the fractal nature
of the time evolution indicates that the length of Pauli
strings do increase on average upon time evolution, it is
natural to expect that asymptotically the point in the
spacetime where ρR(s, t) = 1, the “operator wavefront”,
moves toward s, t→∞. However, there will be no Gaus-
sian broadening of the wavefront.

Similarly, Z0(t) will be Pauli strings that in general
satisfy

[Z0(t), Zs] = (1− e2πif(s,t)/qZ0(t)Zs (32)

where f(s, t) is some function that gives Zq number. Note
that due to the fractal nature of the time evolution, there
is generically no guarantee for f(s, t) to be fixed in late
time; in fact, f(s, t) will oscilliate in the late time as well,
so do out-of time correlators. This is in sharp contrast
to the saturation of out-of-time correlators to constant
values at the late time in the random unitary circuits
and kicked Ising model.

Finally, I would like to point out that for certain classes
of initial states, it is shown mathematically that the en-
tanglement grows linearly with time7. Also, in the origi-
nal paper there are some addtional numerical studies that
observe the linear growth of the entanglement entropy in
more general classes of initial states. Combined with the
earlier statement on ρR(s, t), one can conclude that there
is certainly some notion of scrambling and chaos in the
fractal Clifford circuits as well. However, their behaviors
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seem to be significantly different from the ones expected
from the “universality class” that the Haar-random uni-

tary circuits and the kicked Ising model belong to.
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