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In this article, we review the pioneering phenomenological renormalization group (RG) scheme
proposed and solved in [1]. The scheme basically partitions a 1D system into interlocking thermal
and insulating blocks. As we flow into the infrared, blocks with successively larger lengths are
combined with their surrounding blocks. We show how to derive continuum flow equations for the
RG scheme and how to solve for the RG fixed point. We then outline how various critical properties
of the many-body localization (MBL) transition follow from a combination of exact and approximate
expansions of the RG flows in a physical limit. These expansions reveal a two parameter phase plane
for the MBL transition with a line of fixed points. Remarkably, the critical behavior falls under the
Kosterlitz-Thouless universality class, contrary to previous expectations [2]. In the end, we quote
some mathematical results that give hints of how to generalize this RG scheme to two dimensions
and comment on possible research directions to explore in the future.

c©(Zhengyan Shi). The author warrants that the work is the author’s own and that Stanford
University provided no input other than typesetting and referencing guidelines. The author grants
permission to copy, distribute, and display this work in unaltered form, with attribution to the author,
for noncommercial purposes only. All of the rights, including commercial rights, are reserved to the
author.

INTRODUCTION

Many body localization (MBL) is a novel dynamical
phase of disordered quantum matter where the existence
of an extensive number of local conserved quantities (re-
ferred to as l-bits) prevent the system from reaching local
thermal equilibrium. These emergent conserved quanti-
ties are stable under perturbations of the model parame-
ters, in contrast to the often non-local conserved quanti-
ties that appear in fine-tuned integrable models (see [3]
for some examples of quantum integrable models). Fur-
thermore, the presence of l-bits immediately imply many
striking physical properties-preservation of local memo-
ries at infinite times, logarithmic grow of subregion en-
tanglement entropy etc. (see [4] and references therein).
These properties are not only of theoretical interest to
the foundations of statistical mechanics, but also has im-
portant applications to the stable storage and processing
of coherent quantum information. The groundbreaking
work of Imbrie in 2014 identified these l-bits in an open
subset of the parameter space (labeled by three disorder
strength variables h, γ, J) of a disordered Ising model,
thus putting one-dimensional MBL on a firm theoretical
footing [5]. One natural question is: what happens in the
rest of the parameter space? Numerically, the answer is
clear: simulations have confirmed the existence of a ther-
mal phase in Imbrie’s model away from the MBL region.
But it is an embarrassing fact that a rigorous proof of
the more familiar thermal phase is still missing. From
a mathematical perspective, this fact is perhaps not sur-
prising, because Imbrie’s proof of MBL fundamentally re-
lies on the convergence of perturbation theory when one
of the disorder parameters γ is small (along with some

additional control over the non-perturbative resonances).
On the thermal side, all parameters are comparable to
each other and no perturbation theory should be trusted
whatsoever. This is one of the fundamental challenges of
strongly coupled many-body physics in general.

One additional challenge is that the transition between
MBL and thermal phases is fundamentally a transition
between systems in and out of equilibrium. Therefore,
none of the conventional intuitions about equilibrium
phase transitions applies and progress must come from
novel phenomenological models. In this review, we will
present a heuristic renormalization group (RG) model
first introduced by Goremykina et al. in [1], the latest
of a series of RG models proposed in the past five years.
The earliest model [2] is microscopically motivated but
inaccessible analytically. A variation [6] in 2016 obtained
more precise analytic results after making an unphysical
assumption about the entanglement times of thermal and
MBL systems. The work we review finds a sweet spot in
between [2] and [6], restoring some portion of the micro-
scopic structure in [2] while preserving solvability. We
now proceed to introduce the rules of the RG flow and
analyze its properties.

RULES OF THE GAME

The general philosophy of our approach is as fol-
lows: numerically, the phenomenon of MBL is ubiqui-
tous across models with different microscopic interac-
tions. The theoretical challenge is not to solve all of
these models precisely, but rather to identify universal
features. The universal feature we focus on in this article
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FIG. 1: The one dimensional RG rules of [1] are shown here.
li labels the original lengths of the blocks and T/I stands
for thermal/insulating blocks respectively. The new length of
the combined block is a weighted sum of the lengths of the
original blocks with weightings αT , αI chosen to reflect the
entanglement times of the combined block.

is the logarithmic growth of subsystem entanglement en-
tropy in MBL systems to be contrasted with the power
law growth in thermal systems. Taking advantage of this
distinction, we can partition a general 1D system unam-
biguously into spatially alternating thermal and insulat-
ing (localized) blocks. During the renormalization step at
length scale Γ, we merge all insulating (thermal) blocks
with length l ∈ [Γ,Γ + δΓ] with its adjacent thermal (in-
sulating) blocks as shown in Fig. 1. This 3→ 1 merging
process always creates a new block with effective lengths
satisfying the following RG rules:

l̃I,T = lI,Tn−1 + αT,I l
T,I
n + lI,Tn+1 (1)

where αI,T are asymmetric scaling parameters associated
with decimated insulating/thermal blocks. A priori, the
presence of αT,I may appear to be superfluous. Why
don’t we simply add the lengths? The intuition is that
the effective length should really encode the entangle-
ment properties of the thermal/insulating blocks. Recall
that in insulating/thermal blocks, the entanglement time
(i.e. the time it takes for a block’s entanglement entropy
with an artificial thermal bath to saturate) τ scales ex-
ponentially/linearly with the block lengths. When an
insulating block is absorbed by two thermal blocks, the
insulating block contributes an exponentially large entan-
glement time to the combined thermal block. Therefore
the effective length of the combined thermal block must
be much larger than the sum of lengths of the constituent
blocks. This is why we expect αI � 1 (by a similar argu-
ment, we also have αT � 1). Based on this simple rule,
we can derive RG flow equations for the density profiles
of thermal and insulating blocks in exact analogy with
the Fisher strong disorder RG in [7]. Denote by nI,TΓ (l)
the number of insulating/thermal blocks of length l at
the RG length scale Γ. The density profiles are naturally
defined as ρI,TΓ (l) = nI,TΓ (l)/N I,T

Γ where N I,T
Γ is the to-

tal number of insulating/thermal blocks at RG scale Γ.
From (1) we know that each microscopic step always kills
one thermal block and one insulating block. Therefore,
the equality N I

Γ = NT
Γ is preserved under RG evolution.

For simplicity of notations we simply denote the quantity
by NΓ.

Now observe that the RG rules in (1) imply the follow-

ing equation for nI,TΓ as we do an infinitesimal RG from
Γ→ Γ + δΓ:

nI,TΓ+δΓ(l) = nI,TΓ (l) + nT,IΓ (Γ)δΓ

·
(
− 2ρI,TΓ (l) +

∫ ∞
Γ

ρI,TΓ (l1)ρI,TΓ (l − l1 − αT,IΓ)dl1
)
(2)

where the first term on the RHS is the number of blocks
of length l in the previous RG step, the first term in the
bracket comes from eliminating the two adjacent blocks
and the second term in the bracket comes from creating
a new block, with the length constraint satisfied. At first
glance, this equation seems incomplete. For example, in
the evolution of nIΓ, one would have thought that we need
to add an additional term −nIΓ(Γ)δΓ that eliminates all
the insulating blocks within l ∈ [Γ,Γ+δΓ]. However, this
additional term is in fact not necessary because nIΓ+δ(l)
only makes sense for l ≥ Γ + δΓ and the additional term
doesn’t affect l ≥ Γ + δΓ.

To simplify these equations, we introduce a new vari-
able ζ = l − Γ which always runs from 0 ∼ ∞. Define
new variables ρ(ζ; Γ) = ρΓ(ζ + Γ). Substituting this new
definition into the flow equation, we find

ρI,T (ζ − δΓ; Γ + δΓ)NΓ+δΓ − ρI,T (ζ; Γ)NΓ

= ρT,I(0; Γ)NΓδΓ
(
− 2ρI,T (ζ; Γ)

+

∫ ∞
0

dζ1ρ
I,T (ζ1; Γ)ρI,T (ζ − ζ1 − (1− αT,I)Γ; Γ)

) (3)

Plugging in NΓ+δΓ = NΓ(1− [ρI(0; Γ) +ρT (0; Γ)]δΓ) and
working to first order in δΓ, we find that

LHS

NΓ
= ρI,T (ζ − δΓ; Γ + δΓ)(1− [ρI(0; Γ) + ρT (0; Γ)]δΓ)

− ρI,T (ζ; Γ)

= ρI,T (ζ − δΓ; Γ + δΓ)− ρI,T (ζ − δΓ; Γ)

+ ρI,T (ζ − δΓ; Γ)− ρI,T (ζ; Γ)

− ρI,T (ζ − δΓ; Γ + δΓ)[ρI(0; Γ) + ρT (0; Γ)]δΓ

= (
∂ρI,T

∂Γ
− ∂ρI,T

∂ζ
)δΓ

− ρI,T (ζ; Γ)(ρI(0; Γ) + ρT (0; Γ))δΓ
(4)

With this computation, we can now equate LHS
NΓδΓ

with
RHS
NΓδΓ

in (3) and obtain a compact flow equation after
suppressing the dependence on Γ in our notation

∂ρI,T (ζ)

∂Γ
− ∂ρI,T (ζ)

∂ζ
− ρI,T (ζ)[ρI,T (0)− ρT,I(0)]

= ρT,I(0)

∫ ∞
0

dζ1ρ
I,T (ζ1)ρI,T (ζ − ζ1 − (1− αT,I)Γ; Γ)

(5)
A final manipulation is to rescale the variable ζ → η =
ζ/Γ and rescale the density profile ρI,T (ζ) = 1

ΓQ
I,T
Γ (η).
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After some simple applications of the chain rule, we ob-
tain

∂QI,TΓ (η)

∂ ln Γ
= ∂η[(1 + η)QI,TΓ (η)]

+QI,TΓ (η)[QI,TΓ (0)−QT,IΓ (0)]

+QT,IΓ (0)θ(η − αT,I − 1)

·
∫ η−αT,I−1

0

dη1Q
T,I
Γ (η1)QT,IΓ (η − η1 − αT,I − 1)

(6)
To find RG fixed points, we set the LHS to zero. This
implies that we can drop the dependence of Q on Γ. Due
to the presence of a convolution integral on the RHS,
it is convenient to work with the Laplace transforms
φI,T (x) =

∫∞
0
e−xηQI,T (η). Taking Laplace transform

of both sides, we get

0 =

∫
∂η[(1 + η)QI,T (η)]e−xη

+ [QI,T (0)−QT,I(0)]

∫
QI,TΓ (η)e−xη

+QT,I(0)

∫ ∞
0

dηe−xηθ(η − αT,I − 1)∫ η−αT,I−1

0

QI,T (η1)QI,T (η − η1 − αT,I − 1)

(7)

Via integration by parts, we can turn the first term into

−
∫

[(1 + η)QI,T (η)](−x)e−xη = xφI,T (x)− x∂xφI,T (x)

(8)
The second term only has a trivial η integral which turns
into the Laplace transform of Q(η). For the third term,
we make a change of variables to η2 = η − αT,I − 1.
Choosing the convention that θ(0) = 0, we get

QT,I(0)e−x(1+αT,I)

∫ ∞
0

dη2e
−xη2

∫ η2

0

QI,T (η1)QI,T (η2−η1)

(9)
Now the integral over η1 is just a convolution integral,
and the integral over η2 is a Laplace transform of the
convolution. Thus, by convolution theorem, we find

3rd term = QT,I(0)e−x(1+αT,I)φI,T (x)2 (10)

Putting everything together, we get a differential equa-
tion for the Laplace transform

x∂xφ
I,T (x) = xφI,T (x) + [QI,T (0)−QT,I(0)]φI,T (x)

+QT,I(0)e−x(1+αT,I)φI,T (x)2

(11)
Taking derivatives on both sides with respect to x, evalu-
ating the expression at x = 0, and then using the bound-
ary conditions φI,T (0) = 1, we obtain

∂xφ
I,T (x)|x=0 = 1 + [QI,T (0)−QT,I(0)]∂xφ

I,T (x)|x=0

+QT,I(0)[2∂xφ
I,T (x)|x=0 − (1 + αT,I)]

(12)

To make further progress, we must assume that QT (0) +
QI(0) = 1. This reduces the equation further

∂xφ
I,T (x)|x=0 = 1 + ∂xφ

I,T (x)|x=0 −QT,I(0)(1 + αT,I)
(13)

Eliminating the derivative from both sides, we find some
constraints on αT,I :

QT,I(0) =
1

1 + αT,I
(14)

1

1 + αT
+

1

1 + αI
=

2 + αI + αT
1 + αI + αT + αTαI

(15)

We immediately conclude that consistent choices of αT,I
must satisfy αTαI = 1 given that QT (0) + QI(0) = 1.
How do we justify this assumption? By examining the
defining equation for NΓ, we see that QT (0) + QI(0) =
1 implies an asymptotic conservation law for the total
length of the 1D system:

dNΓ

dΓ
∼ − [QT (0) +QI(0)]

Γ
NΓ = −NΓ

Γ
→ d

ΓNΓ

dΓ
= 0

(16)
This is a pleasant feature that we naturally want to im-
pose. But we should note that it is not as physical as we
may think upon first sight: the conserved length is an
effective length, not the physical length of the system.
Hence there is no a priori reason why this length should
be conserved under RG flow. Nevertheless, we will go
ahead and assume αTαI = 1 since it simplifies the later
analysis. All qualitative lessons we learn are not depen-
dent on this precise relation so long as we are in the limit
αT � 1� αI .

EXTRACTING PHYSICS FROM THE FLOW
EQUATIONS

The fundamental equations that we have derived so far
are exact continuum equations of the RG rules (1). These
equations are not solvable analytically for generic αT,I ,
but provide the starting point for various approximations
and extensions that reveal physical properties:

1. For αT � 1 � αI , the stationary distribution
QI,T∗ (η) can be solved:

QT∗ (η) ∼

{
QT (0)

(1+η)1+QT (0)−QI (0)
η ≤ 1 + α−1

T

e−ΛT η η ≥ 1 + α−1
T

(17)

QI∗(η) ∼

{
QT (0)

(1+η)1+QT (0)−QI (0)
η ≤ 1 + α−1

I

e−ΛIη η ≥ 1 + α−1
I

(18)

Since αT � 1 � αI , the power law region is very
short in QI∗(η) but parametrically long in QT∗ (η).
This point will be important later.
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Critical behavior can be extracted by expanding
the distribution around the stationary solution
QI,TΓ (η). If we assume that the dependence of the
perturbation on η and Γ are decoupled, then we can
write QI,TΓ (η) = QI,T∗ (η) + aI,T (Γ)f I,T (η) where
aI(Γ) = aT (Γ) = Γ1/ν . The linearized flow equa-
tion for f I,T (η) identifies ν−1 with the maximal
eigenvalue of some integro-differential operator. An
asymptotic solution of the eigenvalue problem com-
putes ν−1 as a function of αT as αT → 0. This
analysis is the only step that requires some nu-
merical input, as there are two constants in the
asymptotic solution that cannot be calculated an-
alytically (see the supplemental materials of [1] for
more details). After plugging in the power law form
of QT∗ (η) which is valid for infinite η in the strict
αT → 0 limit, we obtain the asymptotic result
ν = ln

(
1 + α−1

T

)
. The divergence of ν as αT → 0

is in sharp contrast to previous finite estimates ob-
tained in [2].

2. Since the critical exponent ν diverges as αT → 0,
linear perturbations are asymptotically marginal
and we must go beyond linear order to understand
the nature of the fixed points. A precise analysis
of this kind is out of reach. What this article pro-
vides instead is an ansatz obtained by resummation
of large logarithms into shifted exponents. More
concretely, the authors first determine numerically
that at large αT , the eigenmodes behave like

f I(η) = f I0 (1− I0η)e−I0η (19)

fT (η) = fT0
1− ln(1 + η)

(1 + η)2
(20)

Plugging this expression into QT (η) ≈ QT∗ (η) +
κΓf

T (η), we find that

QT (η) ≈ 1 + κΓ

(1 + η)2
− κΓ ln(1 + η)e−2 ln(1+η) (21)

The second term immediately calls for a resum-
mation that shifts the power law exponent from
2 → 2 + κΓ. After some massaging, we see that
the resummation which matches the leading order
expansion obtained from the linear flow equations
takes the form

QT (η) =
1 + κΓ

(1 + η)2+κΓ
(22)

A similar resummation argument applied to the
series expansion QI(η) = I0e

−I0η + (γ − I0)(1 −
I0η)e−I0η gives an ansatz QI(η) = γe−γη. Plugging
these ansatzs into the flow equations and dropping
the integral terms (which are suppressed because

FIG. 2: The line of RG fixed points in the αT → 0 limit are
shown in the plot. The flow lines are meant to be schematic.

QI is exponentially suppressed, we find RG equa-
tions for the parameters γ, κ in the αT → 0 limit:

Γ
dγ

dΓ
= −γκ− γ2(1 + κ) + γ(γκ+ Γ

dγ

dΓ
)η (23)

Γ
dκ

dΓ
[1− (1 + κ) ln(1 + η)] = −γ(1 + κ) (24)

The authors make some further efforts towards ap-
proximating these equations. But the most impor-
tant physical lesson is already transparent. Clearly,
when γ = 0, the first PDE is automatically sat-
isfied. As for the second PDE, since κ, η > 0,
[1− (1 + κ) ln(1 + η)] 6= 0. This means that γ = 0
is consistent with any value of κ > 0. These obser-
vations show that there is a line of fixed points for
γ = 0, κ > 0! In the simplified parameter space of
γ, κ we thus have the schematic phase diagram as
shown in Fig.2.

3. One can also take a different route and study the
RG flows of variables other than the length of ther-
mal/insulating blocks. Due to the peculiar scal-
ings in (1), we know that when combining blocks,
the total length of the new block isn’t simply the
sum of lengths of the old blocks. So what if we
also keep track of the RG flow of total lengths of
decimated blocks rather than total lengths of com-
bined blocks? Computationally, this means that we
should introduce the new RG rules

lIdec = lIi−1 + lTi lTdec = lTi−1 + lTi+1 (25)

Introducing a new variable χI,T = lI,Tdec −Γ in com-
plete analogy as before, we can obtain joint flow
equations for χI,T , lI,T . The equilibrium distribu-
tions determine a scaling of χI,T ∼ ldI,T . The ex-
ponents dI,T are interpreted as fractal dimensions
of the insulating/thermal blocks. In the asymp-
totic limit αT → 0, an expansion to O(α3

T ) can be
obtained:

dI = 1− 3

4

1

(1 + α−1
T )2

+
1

2

1

(1 + α−1
T )3

(26)
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FIG. 3: RG rules in the 2D case. We show four cases where
an insulating block is surrounded by 1,2,3,4 thermal blocks
respectively. This is meant to demonstrate that any integer
number of surrounding blocks is allowed.

dT =
1

ln
(
1 + α−1

T

) (27)

These forms suggest that αT → 0 limit corresponds
to dI → 1 and dT → 0. This makes sense physically
because the effective lengths receive almost no con-
tributions from the thermal blocks every step along
the RG flow.

EXTENSION TO HIGHER DIMENSIONS

When we try to extend the RG schemes to higher
dimensions, some challenges immediately present them-
selves. First of all, 1D systems have a special topol-
ogy that ensures every block is always surrounded by
two blocks. This allows a simple RG rule that always
combines three blocks into one. The same is no longer
true in higher dimensions (as we will explain in more
detail later). Second of all, the natural additive quan-
tity in higher dimensional RG is the volume of ther-
mal/insulating blocks. However, the entanglement times
scale with length rather than volume. The miracle of
one dimension is that length coincides with volume. In
higher dimensions, this misalignment of scales makes it
hard to identify the appropriate renormalization parame-
ters. Nevertheless, we believe that RG is at least possible
in 2D due to some interesting mathematical results that
relate linear and quadratic dimensions in 2D.

We consider a 2D domain of finite extent. When we
partition the domain into blocks, we are giving the do-
main the structure of a graph. Every vertex of the graph
can be assigned a degree which counts the number of
blocks that intersects with the vertex. The assignment
of thermal/insulating labels to these blocks is the ele-
mentary two-coloring problem. Elementary graph the-
ory tells us that such an assignment is possible iff every
vertex has even degree. Under the same assumption, we
can define the RG procedure to be the combination of
a central block with all blocks that share an edge with
itself. This is shown pictorially in Fig.3

Remarkably, the even degree condition is preserved un-
der the RG procedure and we get a well-defined flow. The
RG rules are of course still tricky to define since we do
not have a fixed number of surrounding blocks. But we
can sum over all possible integer surrounding numbers
and obtain a more complicated integro-differential flow
equation. There is no conceptual difficulty in sight.

A more serious problem that we have to tackle is the
identification of appropriate variables that keep track of
changes in entanglement times under RG flow. Area
is not a good candidate because a thin ribbon and a
round disc can have comparable area but drastically dif-
ferent linear dimensions and hence entanglement times.
It would be unphysical to treat them as equal objects
under RG flow. We therefore need to quantify the dis-
crepancy between area and length in an arbitrary block
bounded by some curve C. This link is provided by the
isoperimetric inequality in differential geometry. Since
entanglement times don’t care about small wiggles in the
curve C, we can take all curves to be smooth. Define
L(C) to be the length of the curve C and A(C) the area
bounded by the curve. In 2D, the isoperimetric inequality
says that L2(C) ≥ 4πA(C), where equality is achieved by
circles of arbitrary radius. Deviations from the perfectly
symmetric circle can be encoded in the mean squared cur-
vature ∆κ =

∫
ds(κ(s) − 〈κ〉)2 which is a coordinate in-

variant measure of the degree of irregularity in the curve
C (here,〈κ〉 is the mean curvature). Therefore, a pre-
liminary proposal would be to work out RG rules for A
with a ∆κ-dependent compensation factor that controls
the change in entanglement time upon block combina-
tion. In this review we don’t have time to flesh out the
details of this proposal, but it would be interesting to see
whether the techniques we learn from the 1D RG flow
can be adapted to extract some properties of MBLT in
higher dimensions.

CONCLUSION

The RG analysis that we have reviewed gives a tan-
talizing picture for the MBL transition in one dimen-
sion, predicting a KT scaling qualitatively different from
power law predictions in [2]. But ultimately it is a very
crude toy model that cannot be derived from microscopic
physics (the justification of RG rules in terms of entan-
glement times is heuristic at best). Given the techniques
developed in [1], the time might be ripe for an attempt
to derive the same KT scaling starting with the more
microscopically motivated RG flow proposed in [2]. In a
different direction, as we pointed out in the previous sec-
tion, a generalization of RG to higher dimensions seems
more tractable than attempts to obtain exact solutions in
higher dimensions. Such a generalization may shed light
on the stability of MBL in higher dimensions, a question
that piques the curiosity of everyone working in the field.
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