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In this expository article, we review the periodic-orbit quantization method and its use in verifying
the BGS (Bohigas-Giannoni-Schmit) Conjecture7 of random matrix universality for chaotic quantum
systems. We first illustrate the periodic orbit quantization method by explaining the structure of
the Gutzwiller trace formula2, which determines the leading order semiclassical approximation to
the quantum energy spectrum in terms of classical periodic orbits. We begin by guiding the reader
through the explicit derivation of the Gutzwiller trace formula for a nonrelativistic particle in two
Euclidean dimensions, before presenting the trace formula for arbitrary d. We then introduce the
spectral form factor and explain how the Gutzwiller trace formula can be used to verify5,6 that the
(full perturbative) semiclassical approximation to the spectral form factor (suitably averaged over a
small time interval) of a quantum system with a chaotic classical limit agrees with the predictions
of random matrix theory, in accord with the BGS conjecture.
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I. THE GUTZWILLER TRACE FORMULA2

A key issue one encounters in quantum chaology is the
fact that many of the “standard” methods for studying
the semiclassical regime, such as Bohr-Sommerfeld
quantization, are not actually applicable to chaotic
systems1,2, since the application of such conditions
generally requires that the system be multiply-periodic
(i.e. capable of being decomposed into a product of
systems with one degree of freedom each), which in turn
generally requires that the system be integrable (i.e.
have one conserved quantity for each degree-of-freedom).

One method for studying the semiclassical regime of
nonintegrable systems is the periodic orbit quantization
method pioneered by Gutzwiller in the 1970’s2,3. The
crux of this method is the determination, to leading
order in 1/~, of the spectrum of the quantum mechan-
ical Hamiltonian in terms of the behavior of periodic
solutions to the classical equations of motion (“periodic
orbits” in the classical phase space).

The cornerstone of periodic orbit quantization is the
Gutzwiller trace formula2 eq. (23), which expresses the
semiclassical (ie. leading order in 1/~) approximation
to the quantum system’s resolvent (and hence the
semiclassical approximation to the quantum energy
spectrum) in terms of a sum of one-loop amplitudes,
one for each periodic orbit of the underlying classical
system.

We will begin in section I A by deriving in some de-
tail the Gutzwiller trace formula for the case of a single
nonrelativistic particle in two Euclidean spacetime di-

mensions, before turning in section I B to an explanation
of the generalization to an arbitrary number of Euclidean
spatial dimensions. We will then go on in section II

A. Derivation in d = 2

In what follows, we will restrict our consideration to
the quantization of systems of nonrelativistic particles.
Since we only seek to illustrate the general logic of the
GTF, we will also, for convenience, restrict our attention
to the case of a single particle in two Euclidean spatial
dimensions.

Following2, we begin by considering the Semiclassical
approximation, Rsc(E), to the resolvent

R(E) = Tr

(
1

E −H

)
=

∑
eigenstates

1

E − Ei
(1)

given by

Rsc(E) =

∫
dqGsc(q,q, E) (2)

where H is the Hamiltonian and Gsc is the semiclassical
approximation to the Green’s function (see appendix A
below). The resolvent is a useful quantity since its dis-
continuity across the real axis can be used to obtain the
density of states

R(E + iε)−R(E − iε) = −2πiρ(E) (3)

and so we can consider the determination of the semi-
classical resolvent as equivalent to the semiclassical
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determination of the quantum energy spectrum.

Recall from appendix A that (ignoring for now the
“classical” term G0)

i~Gsc(q′′,q′, E) =∑
classical

trajectories

√
|Ds|

(2πi~)3
exp

[
i

~
Sγ(E)− iπ

2
mγ

]
(4)

where γ is a classical trajectory connecting q′ and q′′

with energy H|γ = E,

Sγ(E) :=

∫
γ

p(q, q̇) · dq (5)

is the classical action along γ, mγ is the Maslov index
counting the number of conjugate points along γ, and

Ds = det


∂2S

∂q′′∂q′
∂2S

∂q′′∂E

∂2S

∂E∂q′
0

 (6)

is the one-loop determinant.

Assuming that exp(iScl/~)√
|Ds|

is rapidly varying in q′, the

integral eq. (2) over q′ is dominated by classical periodic

orbits. This simply follows from the fact that

∂S(q,q, E)

∂q

=

(
∂S(q′′,q′, E)

∂q′
+
∂S(q′′,q′, E)

∂q′′

) ∣∣∣∣
q

(7)

= p′′ − p′ (8)

so that the rapid oscillation assumption implies that the
integral eq. (2) is dominated by paths with p′ = p′′, i.e.
(when q′ = q′′) by periodic orbits. The integration over
q′ = q′′ = q can thus be accomplished term-by-term by
invoking, for each orbit γ, a coordinate system {qi} with
q1 running along the orbit and q2 locally orthogonal to
the orbit.

For a given point q0 on the periodic orbit, we can ex-
pand

S(q,q, E)− S(q0,q0, E)

=
1

2

(
∂2S

∂q′2∂q
′
2

+ 2
∂2S

∂q′2∂q
′′
2

+
∂2S

∂q′′2∂q
′′
2

) ∣∣∣∣
q0

δq′2δq
′′
2 + . . .

(9)

Assuming that the RHS of eq. (9) is singular only for
isolated values of q0, we can approximate the integra-
tion over q2 (in the semiclassical regime S/~ → ∞) by
stationary phase to find

Rsc(E) ∼
S/~→∞

−1

~
∑

periodic
orbits, γ

∮
γ

dq1
√
|Ds|

exp
[

i
~Sγ(E)− iπ

2

(
mγ + 1

2 ±
1
2

)]√∣∣∣ ∂2S
∂q′2∂q

′
2

+ 2 ∂2S
∂q′2∂q

′′
2

+ ∂2S
∂q′′2 ∂q

′′
2

∣∣∣ + . . . (10)

where ± is the sign of the RHS of eq. (9). With some
work (see e.g. Section 2 of2), we can show, furthermore
that

Ds =
1

|q̇1|2
∂2S

∂q′2∂q
′′
2

(11)

A key fact that we must now use is that the Hamil-
tonian flow fixes the two-dimensional (more generally
2(d − 1)-dimensional) submanifold of phase space with

(E, q1) =
(
E(γ), q1(γ)

)
. This automorphism is volume

preserving, fixes γ, and can be approximated in a neigh-
borhood of γ by a linear transformation (specifically, by
the restriction of the monodromy matrix of γ to this
submanifold) with characteristic polynomial P (λ). It
is straightforward, though somewhat technical (see Sec-
tions 3 and 4 of2) to show that the ratio of the deter-
minants appearing in the integrand of eq. (10) is simply
given by P (1), i.e. that

Rsc(E) ∼
S/~→∞

−1

~
∑

periodic
orbits, γ

∮
γ

dq1

|q̇1|
√
P (1) exp

[
i

~
Sγ(E)− iπ

2
mγ +

1

2
± 1

2

]
+ . . . (12)

which follows from writing the monodromy matrix of γ in terms of derivatives of S.
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We now want to deal with the phase factors and ex-
plicit factor of P (1) in eq. (12). For unstable orbits P (λ)
will have two real roots λ = e±u, while for stable orbits
P (λ) will have two roots on the unit circle λ = e±iv, i.e.

P (1) =

+4
(

sin(v/2)
)2

if γ is stable

−4
(

sinh(u/2)
)2

if γ is unstable
(13)

Since this is independent of q1, we can perform the in-
tegration

∮
dq1/|q̇1| over the orbit to simply get an overall

factor of Tγ , the (primitive) period of γ, giving

Rsc(E) ∼
S/~→∞

− 1

~
∑

periodic
orbits, γ

Tγ
√
P (1) exp

[
i

~
Sγ(E)− iπ

2
mγ +

1

2
± 1

2

]
+ . . .

(14)

1. Contribution of Stable Orbits

In order to finish evaluating eq. (14), we begin by
considering the contribution to Rsc(E) from stable
periodic orbits, for which P (1) > 0 (see eq. (13) above).
The number of conjugate points along a given stable
periodic orbit, s, is even (odd) provided the sign of Ds is
positive (negative); thus, for stable periodic orbits, the
amplitude factor exp

[
− iπ

2 (. . . )
]

due to the phase delay
in eq. (14) is always real-valued.

Consider now a particular stable periodic orbit s,
which is “primitive” in the sense that it cannot be writ-
ten as a (nonunit) integer number of traversals of another
periodic orbit. The sum over orbits in eq. (14) counts
multiple traversals of the same orbit as distinct, so there
is one contribution to eq. (14) for each r-traversal of s,
with r ∈ Z+. Such terms come in with the same overall
factor of Ts (since the integration that leads to it is over
coordinate space rather than time) but do not contribute
equally to the amplitude, since the number of conjugate
points along the r-traversal of s varies with r; luckily, it
does so in a way that is simply related to the “stability
angle” v which enters the amplitude via eq. (13): indeed,
we have that2

# of conjugate points = bv/πc (15)

However, we also have that

v(r traversals) = r · v(one traversal) (16)

Using that, additionally

S(r traversals) = r · Ss(E) (17)

we find that the net contribution of s (including all its
r-traversals) to Rsc(E) is given by

Rsc(E) ⊇ −Ts
~

∞∑
r=1

1

2 sin(rv/2)
einSs(E)/~ (18)

Note that we have been able to absorb the conjugate-
point “bookkeeping” of the ±’s into the sign of the
denominator of eq. (18). Assuming that s is sufficiently
isolated from other orbits, one can interpret the above
sum as describing the interference of waves which run
around the stable periodic orbit r times2.

Here we have made the additional approximation that
nv /∈ 2πZ, which physically means that we are ignor-
ing the behavior of the Green’s function at focal points
(where the approximation eq. (4) breaks down). Since
eq. (18) is finite near odd conjugate points, and using ev-
idence from certain special examples for the behavior of
the amplitude near even conjugate points (where the am-
plitude remains finite but only attains half the expected
phase), we are led to conjecture the following correction2

to eq. (18):

Rsc(E) ⊇ −Ts
2~

∞∑
r=1

exp

[
in

(
Ss(E)

~
− v

2

)
+

iπ

2

]
(19)

One can evaluate the resulting geometric series to find
that Rsc(E) has a simple pole of residue 1 whenever

Ss(E)/~ = 2πm+ v/2 (20)

i.e. that the semiclassical density of states has a δ-
function singularity of strength one for each stable clas-
sical periodic orbit satisfying eq. (20). This condition
is considered2 to be the generalization of the Bohr-
Sommerfeld quantization condition to non-integrable sys-
tems.

2. Contribution of Unstable Orbits

Consider now the contribution to Rsc(E)from unstable
periodic orbits, for which P (1) < 0 (see eq. (13) above).
For unstable periodic orbits, the amplitude factor due to
factor exp

[
− iπ

2 (. . . )
]

due to the phase delay in eq. (14)
is always purely imaginary.

A given unstable primitive periodic orbit s̃ will again
yield one contribution to eq. (14) for each r-traversal of
s̃, r ∈ Z+. Thus, if there are l conjugate points along s̃,
there will be r · l conjugate points along an r-traversal of
s̃; as before, the instability exponent for the r-traversal
will be ruone traversal and the action of the r-traversal will
be r ·Ss̃(E), and, in analogy to eq. (18), we find that the
net contribution of s̃ (including all its r-traversals) to
Rsc(E) is given by

Rsc(E) ⊇ − iTs̃
~

∞∑
r=1

1

2 sinh(ru/2)
ein(S~−

lπ
2 ) (21)

This formula suffers from the same issues as eq. (18)
above, and the analog of the conjectured correction
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eq. (19) is

Rsc(E) ⊇ − iTs̃
2~

∞∑
r=1

exp

[
in

(
Ss̃(E)

~
− lπ

2
+

iu

2

)]
(22)

B. The Gutzwiller Trace Formula for Arbitrary d

Having now spent some time acquainting ourselves
with the d = 2 case, it is helpful to zoom out and consider
the Gutzwiller formula for general d, which reads4

Rsc(E) ∼
~→0

1

i~
∑

primitive
orbits, p

Tp

∞∑
r=1

exp
(

i
~Sp(E)− iπ

2 m̃p

)√∣∣det
(
1− (Mp)r

)∣∣
(23)

Here p labels primitive classical periodic orbits, r enu-
merates repetitions of a given periodic orbit, Mp is the
monodromy matrix of p, and m̃p is the Maslov index of p
(see appendix A). Note that unlike similar trace formulas
found in mathematics (such as the Selberg trace formula,
see11 for a review), the Gutzwiller trace formula is not
exact, but rather the leading term in a semiclassical ex-
pansion.

1. An Aside: The Monodromy Matrix

For completeness, we remind the reader that the mon-
odromy matrix, Mγ , of a periodic orbit γ is defined as
follows: We begin by considering a trajectory, γ′, which
is contained within a neighborhood of γ. Letting (q,p)
and (q′,p′) to be canonical coordinates constructed rela-
tive to γ and γ′ as described above, we set ξ′ = q′−q and
η′ = p′−p. After a time Tγ , the particle described by γ′

will evolve to the point (q′′ = q + ξ′′,p′′ = p + η′′), lin-
early related to (q′,p′) by the monodromy matrix, Mγ ,
i.e. (

ξ′′

η′′

)
= Mγ

(
ξ′

η′

)
(24)

II. SEMICLASSICAL TESTS OF RANDOM
MATRIX UNIVERSALITY

A useful arena for learning how to diagnose the
presence of quantum chaos is the semiclassical regime
of quantum systems with chaotic classical limits. One
hopes that a proper understanding of this situation will
help us understand which properties of the quantum
theory might reflect the presence of chaos in the classical
limit, and so understand which properties of a quantum
mechanical system might diagnose the presence of chaos
(nonintegrability) more generally.

One of the most well-understood diagnostics of
quantum chaos, which does not depend on the presence

of any additional structure beyond quantum mechanics
and nonintegrability, is the notion of “fine-grained” or
“late-time” chaos, as captured by the celebrated BGS
(Bohigas-Giannoni-Schmit) Conjecture7 of Random
Matrix Universality. The BGS conjecture posits that
the excited energy levels of a chaotic quantum system
should—when averaged over small energy windows
and viewed at scales sightly coarser than that of the
average energy spacing—be distributed like those in a
random matrix theory. The particular universality class
of random matrix theory describing the spectrum is
expected to be determined only by the basic discrete
symmetry properties of the system (such as e.g. the
presence or absence of time-reversal symmetry). The
BGS conjecture is supported by an overwhelming
amount of numerical and experimental evidence4, but
its underlying theoretical foundations are to date poorly
understood.

As we have seen above, the periodic-orbit quantization
of Gutzwiller is a viable method for probing the semi-
classical approximations to the spectra of quantum sys-
tems with chaotic classical limits, and so a natural use
might be to verify the BGS conjecture in the semiclassi-
cal regime. We will now give a rough sketch for how one
does this, following the work of Altland, Braun, Haake,
Heusler, and Müller5,6.

A. The Spectral Form Factor

A key diagnostic tool in the study of late-time
quantum chaos is the spectral form factor, which is
defined as follows: One begins by choosing some free
parameter (e.g. a time interval) over which to average
observables in our system, and then calculates the two-
point correlation function of the density of states with
respect to this averaging procedure 〈ρ(E)ρ(E′)〉 (here
and in what follows, 〈 · 〉 denotes averaging with respect
to e.g. small time intervals or within random matrix
theory, rather than a quantum expectation value).
This gives a quantity which probes the distribution
of the system’s energy levels and which can be eas-
ily compared to the predictions of random matrix theory.

The spectral form factor (SFF), K(τ), is defined to
be the Fourier transform of the normalized connected
density-density correlator

K(τ) :=

∫
dε e

i
~ εt
〈 ρ(E + ε/2)ρ(E − ε/2) 〉c

ρ(E)
(25)

viewed as a function of the dimensionless time variable:

τ = t/TH (26)

where

TH = 2π~ ρ(E) (27)
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is the Heisenberg time, with semiclassical approximation

TH sc =
Ω(E)

(2π~)d−1
(28)

where Ω(E) is the symplectic volume of the energy
shell and, here, d is the number of degrees of freedom.
Note that conventions for the normalization, units, and
notation for the SFF and its argument differ across
disciplines.

According to the BGS conjecture, we expect a chaotic
system with Hamiltonian H to fall into one of three
classes4: unitary (no time reversal symmetry), orthog-
onal (time-reversal symmetry squaring to the identity),
or symplectic (time-reversal symmetry squaring to minus
the identity), with random matrix theory predictions8

K(τ) =


τ (Unitary)

2τ − τ log(1 + 2τ) (Orthogonal)
1
2τ −

1
4τ ln(1− τ) (Symplectic)

(29)

for |τ | < 1. The spectral form factor reflects the “rigid-
ity” of chaotic spectra, in which nearby energy levels tend
to repel one another and adhere to a consistent spacing
(for the classes above, given by the so-called “Wigner sur-
mise”). For chaotic systems, it is expected that the SFF
eq. (25) will begin to resemble the random matrix the-
ory prediction eq. (29) for τ larger than a nonuniversal
time-scale known as the “ramp” or “Thouless” time9.

B. The Spectral Form Factor From Periodic Orbits

Its a remarkable fact that, for chaotic systems with
ergodic and hyperbolic classical dynamics, one can actu-
ally derive the pectral form factor eq. (29) directly from
the Gutzwiller trace formula eq. (23)5,6 in the semiclas-
sical limit. One does this by using eq. (23) to yield the
semiclassical expansion of the density of states

ρsc(E) =
1

π~
Re
∑
γ

Aγ e
iSγ(E)/~ (30)

giving

Ksc(τ) =

〈∑
γ,γ′

AγA
∗
γ′ e

i
~ (Sγ−Sγ′) δ

(
τ − Tγ + Tγ′

2TH

)〉
(31)

and then taking the semiclassical limit ~→ 0, TH →∞,
Tγ/TH = const. In this limit, the leading (perturbative
in 1/~) contributions to eq. (31) come from families
of pairs of orbits (γ, γ′) with small action difference
|Sγ − Sγ′ | ∼ ~; all other contributions are nonperturba-
tively suppressed by the rapidly oscillating phase factor.

The primary assumptions are ergodicity and hyper-
bolicity of the classical dynamics and finiteness of all

classical relaxation times (as determined by Ruelle-
Pollicott resonances and Lyapunov exponents). The
latter condition is needed to ensure that the shortest
time scale of relevance (the Ehrenfest time) is still much
larger than any classical time scale.

For systems described by the unitary or orthogonal
classes (for simplicty and brevity, we ignore systems de-
scribed by the symplectic class, which are covered in6),
we can recover the first term of eq. (29) from the leading
order term of eq. (31), yielded by restricting the double
sum to a single sum over pairs of orbits with Sγ = Sγ′ ,
For systems without time reversal symmetry, this is sim-
ply given by taking γ′ = γ. Classical ergodicity allows
us to apply the Hannay-Ozorio de Almeida (HOdA) sum
rule12 〈∑

γ

|Aγ |2 δ
(
τ − Tγ/TH

)〉
= τ (32)

(〈 · 〉 denoting averaging over a small time interval) and
so we find that

〈Ksc(τ)〉 ≈
~→0

τ (without time reversal) (33)

as predicted in eq. (29). This is the famous “diagonal”
approximation of Berry10. For systems with time reversal
symmetry T (since we are considering systems with con-
ventional classical limits, i.e. Bosons, we will necessarily
have T2 = 1), there is an overall factor of 2

〈Ksc(τ)〉 ≈
~→0

2τ (with time reversal) (34)

which comes from an additional, equal contribution to
eq. (31) from pairs with γ′ = Tγ; this matches the
prediction of eq. (29) for the orthogonal class.

The remaining terms in the power series expansion of
eq. (29)

K(τ) =


τ +

∞∑
n=2

0 (Unitary)

2τ +
1

2

∞∑
n=2

(−1)n2n

n− 1
τn (Orthogonal)

(35)

can be obtained as follows: The condition that we only
consider pairs of orbits with small action difference
means that we should only consider the contribution to
eq. (31) from pairs (γ, γ′) where γ and γ′ differ from
one another only within a close l-encounter5,6, where
a close l-encounter is a short stretch of configuration
space along which two distinct segments of a given orbit
run alongside one another (before they begin to diverge
exponentially due to chaotic Lyapunov behavior). In
the special case of a close 2-encounter, we call (γ, γ′) a
Sieber-Richter pair (see fig. 1).
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FIG. 1: Sketch of a Sieber-Richter pair in configuration space,
inspired by Fig. 1 of6. The partner orbits differ noticeably
only inside an encounter of two orbit stretches. The sketch
greatly exaggerates the difference between the two partner or-
bits outside the encounter and greatly underemphasizes both
the relative and absolute lengths of the orbit stretches outside
the encounter.

Let vl (l ≥ 2) be the number of close l-encounters
within which γ and γ′ differ, V :−

∑
l vl be the total

number of close encounters and L :=
∑
l lvl be the total

number of orbit stretches within encounters (= the total
number of “loops” outside encounters). Then the nth
term in eq. (35) is reproduced by the contribution to
eq. (31) from all families of pairs with L − V + 1 = n.
This is worked out in detail for n = 2, 3 in13, and the
general combinatoric argument is given in5,6.

APPENDIX A: THE SEMICLASSICAL GREEN’S
FUNCTION4

Conservation of phase-space volume under classical
Hamiltonian time evolution q0 7→ q(t) leads to the con-
dition

ρ(q(t), t) =

∣∣∣∣ ∂q0

∂q(t)

∣∣∣∣ ρ(q0, 0) (A1)

on the classical phase-space density ρ(q, t). This means
that the semiclassical (S/~→∞) approximation, ψsc, to
the quantum-mechanical wavefunction should evolve as

ψsc(q, t) ≈
small t

√
∂q0

∂q
eiS(q,q0,t) ψsc(q0, 0) (A2)

where in the above expression we take t to be small
enough that there is a unique classical solution connect-
ing q0 to q.

If we relax this restriction on t, there will in general be
many such classical trajectories, {γ}, connecting q0 to
q; the orientation of dq0 need not be consistent among
the distinct classical trajectories, so we must take care to
keep track of the sign of the Jacobian via

∂q0

∂q

∣∣∣∣
γ

= e−iπmγ

∣∣∣∣∂q0

∂q

∣∣∣∣
γ

(A3)

where the Maslov index, mγ , denotes the number of con-
jugate points along γ. We thus have that

ψsc(q, t) =

∫
dq0

∑
classical

trajectories

√ ∣∣∣∣∂q0

∂q

∣∣∣∣
γ

eiSγ− iπ
2 mγ ψsc(q0, 0)

(A4)
Matching to the usual short time expression for the

propagator

K(q,q0, t)

≈
small t

(
1

2πi~
m

t

) d
2

exp

[
i

~

(
m(q− q0)2

2t
− V (q)t

)]
≈

(
1

2πi~

)d/2√ ∣∣∣∣ ∂S

∂q∂q0

∣∣∣∣
γ

e
i
~S(q,q0,t) (A5)

gives the identity

Ksc(q,q0, t) =
∑

classical
trajectories

√ ∣∣∣∣∂p0

∂q

∣∣∣∣
γ

e
i
~Sγ−

iπ
2 mγ (A6)

here we have used that(m
t

)d
≈
∣∣∣∣∂p∂q

∣∣∣∣ =

∣∣∣∣ ∂2S

∂q∂q0

∣∣∣∣ (A7)

The relation between the Green’s function and the
propagator

G(q,q0, E) =
1

i~

∫ ∞
0

dt e
i
~EtK(q,q0, t) (A8)

then tells us that the semiclassical approximation to the
Green’s function can be expanded as

Gsc(q,q0, E) = G0(q,q0, E)

+
∑

classical
trajectories

Gsc(γ)(q,q0, E) (A9)

where each Gsc(γ) is given by the one-loop approximation

i~Gsc(γ) =

√
Ds

(2πi~)d
e

i
~Sγ−

iπ
2 m̃γ (A10)

Here

Ds = det


∂2S

∂q∂q0

∂2S

∂q∂E

∂2S

∂E∂q0
0

 (A11)

is the one-loop determinant and m̃γ now includes all the
sign flips of ∂2

t S as well. This one-loop approximation
follows immediately from the standard asymptotics∫

dxA(x) eisΦ(x)

∼
s→∞

∑
stationary
points x0

(
2πi

s

) d
2 A(x0) eisΦ(x0)− iπ

2 m(x0)√
|det Φ′′(x0)|

(A12)
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(where m(x0) counts the number of negative eigenvalues
of Φ′′(x0)) and the fact that the stationary point, t∗, of
(A8) obeys

∂tS(q,q0, t∗) = E (A13)

The “classical” term

i~G0(q,q0, E)

=

∫ ∞
0

dt
( m

2πi~t

) d
2

exp

[
i

~

(
(E − V (q)) t+

(q− q0)2

2t

)]
(A14)

encodes the contributions to Gsc from “short”
(Tγ . E/~) trajectories not covered by the station-
ary phase method (which requires t∗ � E/~).
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