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Simulation of quantum systems with quantum mechanical objects has been a goal of physicists
since Feynman. Quantum mechanical systems are inherently intractable in classical systems. A
coherently controlled quantum simulator should then give us to insight into quantum mechanics by
making measurements that we cannot easily compute. In this paper I will describe an experiment
using neutral atoms to simulate a Hamiltonian, and show how a surprising lack of ergodic behavior
motivated new interpretations of quantum mechanical theory.
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I. INTRODUCTION

Simulations of quantum systems are difficult on clas-
sical systems. In a quantum lattice model, adding addi-
tional lattice sites increases the system size exponentially,
rather than polynomially for a classical system. There
are a variety of clever methods to simulate quantum sys-
tems on a classical computer, but they necessarily must
make some assumption to decrease the effective size of
the Hilbert space.

However, with enough control, it is possible to directly
build quantum mechanical systems that can lead to new
discoveries. Neutral atoms provide a pathway to gener-
ating large-scale tunable simulators. There are a variety
of trapping techniques, and lasers can be tightly focused
down to engineer a wide variety of interactions between
different atoms.

The quantum simulator used energy levels of neutral
atoms as their spin states. With clever trapping tech-
niques, they were able to create a 1D array of spins,
and study systems with short ranged interactions. In
a quench experiment, with the initial state prepared as a
low-energy state of one Hamiltonian, the group saw non-
thermalizing dynamics, despite the system not having
disorder, or obvious symmetries. This lead to a revival
in the theory of scars2, originally proposed in the 1980s,
as an explanation for these non-thermalizing dynamics.
Furthermore, while there are a variety of systems that do
not thermalize, such as many-body localizing systems, or
integrable Hamiltonians, it is not clear to what degree
systems can be non-thermal. In this paper I will present
experimental work from the Lukin group at Harvard on
building a quantum system, and discuss how their results
using a quantum simulator led to new insights in the form
of quantum scars, which are only weakly non-thermal.

FIG. 1: Experimental apparatus schematic.

II. EXPERIMENT

In this experiment, the Harvard group begin with 87Rb
atoms in a magneto-optical trap, that are then loaded
into optical tweezers1. Each tweezer has a waist of
roughly 1 µm, and this small waist causes pairs of atoms
to interact and form molecules. Molecules will no longer
be trapped in the optical tweezers, and this leads to sin-
gle atoms trapped in each tweezer, if the initial number
of atoms was odd. Thus, after loading the atoms into the
tweezers, each tweezer will have ∼ 1/2 chance of having
a single atom. By rearranging the traps with atoms, the
Harvard group can reliably load single arrays of 51 atoms.

Ordinarily, neutral atoms do not have strong enough
interactions to observe any dynamics on the time scale
of trapping. However, if the atoms are placed in a state
with very large principal quantum number n, then the
larger size of the atom can be used to induce interactions
between the atoms. These large n states are called Ryd-
berg states and the interaction energy scales as ∼ n11/r6.

The individual atoms are excited into the Rydberg
state using a pair of focused lasers that couples to each
atom equally, schematic shown in fig. 1. Each atom can
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then be in either the ground state g, or the Rydberg state
r. The driving laser has a coupling to each atom, Ω, and
some detuning ∆ from the actual transition. The cou-
pling Ω switches the atom from g to r, while the detuning
adds an effective energy cost for being in the Rydberg
state. In addition, two atoms that are simultaneously
excited into the Rydberg state will have an interaction.
This leads to the Hamiltonian

H =
∑
i

(Ω(gr + rg)i −∆ni) +
∑
i,j

Vijninj , (1)

where ni = riri. We can identify (gr + rg)i = σx
i .

Vij scales with the spacing between individual tweez-
ers. If the spacing is small enough, then Vi,j > Ω eventu-
ally. This is the so-called Rydberg blockade, and physi-
cally it means that an atom excited to the Rydberg state
prevents neighboring atoms from being simultaneously in
the Rydberg state. As interaction strength increases, the
spacing between nearest excited atoms must increase.

The phases of the system can be probed via an adi-
abatic sweep. Using optical pumping, all atoms can be
prepared initially in g. If ∆ < 0, then the ground state
of this Hamiltonian remains in the state where all atoms
are in g. Slowly sweeping the detuning of the laser field
from negative to positive should transfer from the ground
state to a Zn ordered state. The Zn ordered state is char-
acterised by individual atoms appearing at the excited
spacings every n atoms. The Z3 state for example is a
chain of rggrggrgg · · ·. The exact value of n is deter-
mined by the scaling of Vij vs. Ω, and so by adjusting
the spacing between tweezers different Zk states can be
realized.

The experiment then moves on to measure quench dy-
namics. From an initial Z2 state (rgrg · · ·/grgr · · ·), pre-
pared using the adiabatic sweep, the detuning ∆ is sud-
denly set to 0, by suddenly changing the frequency of
the Rydberg lasers to be on resonance. This results in a
series of oscillations in the state, going from rgrgrgrgr
to grgrgrgrg and back again. These oscillations are rel-
atively long-lived, showing more than 6π of oscillation.
Note that if ∆ = 0, the two decay timescales go as 1/Ω
and 1/Vi−1,i. However, the oscillations are much longer
lived than either of these timescales. In addition, the
oscillation frequency is not the same as for a set of non-
interacting atoms.

These dynamics can be seen directly for 9 spins. How-
ever, for larger system sizes, preparing a perfect Z2 state
is tricky. The adiabatic sweep might not be fully adi-
abatic, and in general there are detection and prepara-
tion errors that will scale geometrically in system size.
In larger ensembles, defects in the preparation of the Z2

state result in an average bulk without features. Random
domain walls wash out the order observed in each state.
However, as the small 9 qubit system oscillates between
the two ordered states, there is a period of minimal order.
This can be characterized by a large density of domain
walls in any individual shot at a time in between the
the two ordered extremes. Looking at the density of the
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FIG. 2: Domain wall density for a 51 spin system shows the
same 6π of oscillation seen in the 9 spin system. Redrawn
from experimental results presented in fig. 6b. Source: A.
Periwal

domain walls as a function of time then shows the oscilla-
tions between the states, and can be used to characterize
larger spin systems.

The modulation in domain wall density for a 51 spin
system is shown in fig. 2, and has the same frequency as
the 9 spin system.

This Hamiltonian seems to have no conserved quanti-
ties beyond the total energy, so these long-lived oscilla-
tions provide an exciting puzzle.

III. QUANTUM SCARS

In classical chaos, there exist periodic orbits even in
classical systems. For example, a billiards ball bounc-
ing around a table can have a stable orbit, if the initial
conditions are correctly chosen. Indeed, there may be an
infinite number of such orbits, but the total measure in
phase space will be 02. In the early 1980s, scientists be-
gan expanding this idea to quantum mechanics, notably
Steven McDonald, Allan Kaufman, and Eric Heller2,6.
These stable trajectories were termed “scars”. Heller
in particular showed that for a single particle there is
a large overlap between these periodic orbits and some
wave functions of the single particle.

The experiment described, however, involves a many
body phenomena, but the idea put forward nearly 40
years ago provides valuable insights into understanding
the experimental results. The theory results described
here were published by Turner et. al. in 2018, but
there have been a variety of different papers investigating
scarred states and the PXP model.

Note that ni = (1 +σz
i )/2. Working in the limit where

V = Vi,i+1 > Ω yields

H =
∑
i

nini+1 + Ω/2V
∑
i

σx
i . (2)
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The Rydberg blockade restricts the Hilbert space to re-
move nearest neighbor simultaneous excitations, and so
defining the projection operator Pi = gg, the original
Hamiltonian after the quench is expressed as the PXP
model.

H =
∑
i

Pi−1σ
x
i Pi+1 (3)

While individual defects were common in the prepa-
ration of the Z2 state, in the theoretical analysis, the
Rydberg blockade was kept as a hard constraint. The
dimension of the Hilbert space, rather than being 2L,
becomes limited, since states with adjacent Rydberg ex-
citations are never allowed. Adding an additional spin
to a chain with open boundary conditions increases the
dimension of the Hilbert space by the dimension of the
Hilbert space with one fewer atom. Since the one atom
case has a dimension of 2, this means that D(L) = FL+2,
where F denotes the Fibonacci sequence.

It is important to note that the PXP model has an
inversion symmetry. In the experimental case, any inho-
mogeneity in the Rydberg beam will break these symme-
tries, but when doing numerics, these must be addressed.

As a preliminary check, the level spacing statistics of
the PXP model are computed, and these are clearly non-
Poissonian for a variety of system sizes, and so the Hamil-
tonian does not seem integrable.

Just as the experiment started from a Z2 charge den-
sity wave, in these initial calculations, the Turner group
starts with some initial Zk density wave states, as well
as a g · · · g state. The midpoint partition entanglement
entropy for 4 distinct k values was calculated at differ-
ent times. All the different initial states show different
growth rates of entanglement entropy. Most interest-
ingly, the entanglement entropy showed oscillations at
the same frequency found in the experiment. The same
frequency oscillations are additionally found in nearest
neighbor correlation functions. However, this should
perhaps not be so surprising. After all, simulating the
Hamiltonian in question better lead to dynamics that
line up with the experimental results.

This is consistent with the analysis done by the ex-
perimental team. They noted that the Z2 state did not
reach thermal equilibrium after a quench, while other
states, like the g · · · g state, quickly reached the thermal
value. This is sketched in fig. 3. While the two states
have the same energy density, the Z2 initial state, which
is an infinite temperature state, shows non-vanishing os-
cillations around a non-thermal value. Since the initial
state is what is driving the oscillations in the system, the
next step in analysis is to look at how the initial state of
the system interacts and compares with the PXP Hamil-
tonian.

The next calculation lead to the real insight in under-
standing the dynamics of the Rydberg simulator. The
key idea seen is that any non-ergodic behavior is depen-
dent on the initial state of the system, rather than just
on the Hamiltonian. It then makes sense to look at the
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FIG. 3: A sketch of domain wall density as a function of time,
based on fig. S10 from1. Blue curves show time evolution of
the Z2 state, while red curves show time evolution of the g · · · g
state. The Z2 state has long lived oscillations, especially in
the constrained Hamiltonian. The state beginning with no
Rydberg excitations quickly reaches the thermal expectation,
and does not show the same oscillations.
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FIG. 4: Eigenstates plotted with respect to energy and over-
lap with Z2 state. Red crosses show scarred states, which
have strong overlap with the forward scattering approxima-
tion states. Figure adapted from fig. 3a from7. Soure: A.
Periwal.

overlap between the Z2 state and the eigenstates of the
Hamiltonian. This is shown schematically in fig. 4. There
is an obvious group of eigenstates that have an abnor-
mally large overlap with the Z2 state at a fixed, specific,
energy. The energy spacing between these states is the
same as the oscillation frequency observed in the dynam-
ics, up to a factor of 2 for since the 0 qubit can have two
possible states.

It is possible to characterize these states using a
method called the “forward scattering approximation”.
To begin, the Hamming distance between two strings
a and b is the number of characters in a that must be
changed to turn a into b. Now, our Hamiltonian can be
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decomposed. Earlier we noted that σx = gr+ rg, and so
we can decompose H = H+ +H−, with

H+ =
∑
i even

Pi−1rigiPi+1 +
∑
i odd

Pi−1giriPi+1.

H+Z2 gives a superposition of every state with a sin-
gle spin flip, while H− annihilates Z2. Induction and
a little more algebra extends this to say that H+ in-
creases the Hamming distance from the Z2 state by 1,
and H− decreases the Hamming distance. These cre-
ation/annihilation operators define a ladder of states
n ∝ HnZ2. This ladder structure lets us write a Hamil-
tonian in this forward scattering basis which has only
elements that are one off the main diagonal.

Since n has Hamming distance n from Z2, this Hamil-
tonian naturally has only n eigenstates. Plotting the
overlap of these n eigenstates with the Z2 state yields
the same band of abnormal overlap states. This is some-
what intuitive. We are looking at states that are derived
by applying some operator repeatedly to the Z2 state, so
these states should not be too far away from Z2. How-
ever, in a general thermal state, a small basis of order L
states would not be able to approximate a generic eigen-
state in a thermalizing Hamiltonian.

These special many-body eigenstates are scars, local-
ized in on specific region of the Hamiltonian. Initializing
a state in this basis, as done via the adiabatic sweep into
the Z2 state yields an initial state that stays within this
localized region and exhibits non-thermalizing dynamics,
even when the system is globally thermalizing. This is a

new theory of ergodicity-breaking, that is distinct from
localization or symmetry.

As the name suggests, the forward scattering approx-
imations is not exact. It is not understood where these
states come from in the full model, or when scars can be
observed.

The Turner group demonstrates some amount of ro-
bustness to deviations in the Hamiltonian. Small pertur-
bations of the Hamiltonian show some of the same oscil-
lations. However, even small changes to the Hamiltonian
show a dramatically faster timescale to thermalizaiton.

IV. OUTLOOK

The experimental and theory results explained here
have lead to a variety of other work on the PXP model.
For example, some recent work suggests that a deforma-
tion of the PXP model moves it closer to integrability,
and the PXP Hamiltonian is close to an integrable point
for some unknown parent Hamiltonian4. Further work
has shown that some eigenstates of the PXP Hamilto-
nian at infinite temperature violate ETH, and that these
states with some manipulations have strong overlap with
the Z2 state5.

Without doubt, there is more to study in quantum
scars, and other groups are finding evidence for the phe-
nomenon in experimental systems3. These advances can
hopefully continue to help our theoretical understanding
of quantum many-body dynamics.
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