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We review recent renormalization group (RG) methods for studying the transition between the
many-body localized (MBL) and thermalized phases. Conventional real-space RG protocols involve
coarse-graining the degrees of freedom into thermal and insulating blocks, and calculating critical
exponents from (FILL IN). A more recent approach defines an RG flow in Hamiltonian space in
order to find the emergent local integrals of motion in the MBL phase. One advantage of this
approach is that it can potentially be used to study MBL in an arbitrary number of dimensions.
On can understand the Hamiltonian-space flow as being performed by a tensor network, and the
holographic interpretation of the flow leads to a fragmented network geometry.
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I. INTRODUCTION

A. The MBL and ETH phases

According to the eigenstate thermalization hypothesis
(ETH), a large class of isolated quantum many-body sys-
tems are capable of reaching thermal equilibrium. This
means that the expectation values of few-body observ-
ables at late times are well predicted by the energy of
the system rather than by the microscopic degrees of
freedom, just as in the classical Gibbs ensemble4,18. One
can understand thermalization as resulting from the iso-
lated system acting as a thermal bath for itself. Under
unitary time evolution, information about the system’s
initial conditions is scrambled among nonlocal degrees
of freedom, making such information inaccessible to few-
body operators5. The ETH postulates an explanation for
this scrambling that relies on the random-vector proper-
ties of individual energy eigenstates in a non-integrable
system4,11. In the thermodynamic limit, the large en-
tanglement entropy of any finite subsystem will cause its
reduced density matrix to converge to the equilibrium
thermal distribution13.

However, there is a notable exception to the ETH:
in the presence of a strongly-disordered potential,
non-integrable systems can fail to thermalize—a phe-
nomenon known as many-body localization (MBL). In
an MBL system, disorder generates energetic detuning
between eigenstates with similar microscopic configura-
tions. Hence, the expectation values of local observables
are no longer a smooth function of energy in the ther-
modynamic limit and therefore do not follow the micro-
canonical ensemble. The presence of disorder in localized
systems dramatically slows the spread of quantum infor-
mation, leading to a failure to come to equilibrium5. The

eigenstates are said to be “localized,” i.e. exhibit sub-
thermal “area-law” entanglement entropy, analogous to
the ground states of local Hamiltonians. The novelty of
MBL systems comes from the fact that these features
can persist for highly-excited eigenstates at large energy
densities.

One can understand localization and thermalization as
different phases of the same disordered Hamiltonian. A
canonical example in 1D is the following Hamiltonian9,10

written in terms of spin degrees of freedom:

H =
∑
i

his
z
i + J

∑
i

Si · Si+1 + . . . (1)

where Si represents the total spin vector for the ith spin
Si = (sxi , s

y
i , s

z
i ) and hi is a random field drawn from

the uniform distribution [−W,W ]. The ellipsis indicates
the possibility of including progressively less-local inter-
actions, such next-nearest neighbor interactions.

In the absence of interactions, the Hamiltonian is in-
tegrable and possesses an extensive number of conserved
quantities, or local integrals of motion (LIOMs). Fur-
thermore, the eigenstates are localized and randomly dis-
tributed in energy spacei. In the strong disorder regime
(W >> J) one can treat the interaction terms pertur-
batively, and the eigenstates will mostly retain their lo-
cal character. This is because the matrix elements of
the interaction only significantly couple eigenstates with
similar configurations and one must go to higher-orders
in perturbation theory to hybridize distant eigenstates in

i The localization of the eigenstates can also be seen by perform-
ing a Jordan-Wigner transformation on the Hamiltonian, which
maps to a model of fermion occupation with hopping interac-
tions.
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configuration space. Although the small matrix elements
may be compensated for by small energy differences be-
tween pairs of eigenstates, the occurrence of such “res-
onances” is rare for sufficiently large disorder. Hence,
the weak interaction serves only to “dress” the LIOMs
and the system is said to be in the MBL phase6,8,17.
Meanwhile, in the strong-interaction regime (J >> W )
the eigenstates become delocalized due to resonant ad-
mixing of eigenstates, and the presence of integrability-
breaking interactions gives rise to a robustly thermal
phase. The competition between the disorder strength
and the strength of local interactions generates the tran-
sition that separates the thermal and localized phases.

B. Diagnosing Emergent Integrability Using
Renormalization Flow

Although MBL is known to survive to all orders in
perturbation theory even with power-law interactions1,
it is an open question whether the MBL phase is stable
to non-perturbative effects. Incidentally, the most com-
pelling evidence for the survival of the MBL phase relies
on the existence of a the most compelling evidence for
the survival of the MBL phase relies on the existence of a
local unitary transformation that recasts MBL Hamilto-
nian into an integrable form in terms of new effective lo-
cal degrees of freedom8,12. Then, the lack of thermaliza-
tion in the MBL regime can be attributed to an extensive
number of emergent integrals of motion. For instance,
one expects that deeply within the localized phase, the
Hamiltonian written originally in terms of “p-bits,” i.e.
Pauli operators {σi}, can be rewritten as a local Hamilto-
nian in terms of “`-bits” (localized bits) with pseudospin
operators {τi}6

H =
∑
i

εiτ
z
i +

∑
i<j

εijτ
z
i τ

z
j +

∑
i<j<k

εijkτ
z
i τ

z
j τ

z
k + . . .

(2)

where the τzi operators are quasilocal and the coupling
constants εi1i2... decay exponentially for interactions over
a longer range.

εi1...ik ∼ exp (−max |ia − ib|/ξ) (3)

with some characteristic length scale ξ.
Note that the rewritten Hamiltonian generates time-

evolution that conserves each τzi . This suggests that
MBL systems may be thought of as a class of integrable
systems in which the eigenstates look are product states
of the `-bits.6 In this framework, localized systems with
strong disorder are diagonalized by eigenstates which
have compact support on the many-body system, with
some characteristic localization length6,7.

Finding a local transformation that diagonalizes the
Hamiltonian is challenging. This stems from the fact
that there are infinitely many choices for the LIOMs (any
linear combination of them is also conserved), and only

a restricted set of unitary transformations will result in
maximally-localized `-bits. One approach uses the long-
time evolved average of the initially local p-bit operators
as the LIOMs3. The reasoning there was that the time
evolution causes the operators to grow more nonlocal but
the nonlocal parts are averaged out due to their oscilla-
tory behavior. However, because this method employs
exact diagonalization, it is really only accessible for small
system sizes. A promising alternative is to define a type
of renormalization group flow that performs a succession
of local similarity transformations that eventually diag-
onalizes the Hamiltonian. In this case, the flow encodes
a unitary transformation that maps the p-bits to the `-
bits. Once the Hamiltonian is diagonalized, one can then
evaluate degree of locality from the coupling constants,
and also study other properties of the MBL Hamiltonian
(entanglement entropy, level statistics, etc).

There are several ways one can go about defining the
RG rules for the aforementioned “Hamiltonian-space”
flow. In the following sections, we discuss two different
methods that have recently been implemented in MBL
systems: 1) Wilson-Wegner Flow (WWF)14,23 and 2)
Spectrum Bifurcation RG (SBRG)16,22. In WWF, one
defines a continuous flow parameter that characterizes
the energy scale one is operating at in the RG step. Then,
the rules for the flow are governed by a differential equa-
tion for the elements of H that reduces the magnitude
of the off-diagonal elements. Meanwhile, spectrum bi-
furcation involves a discrete RG flow with a finite total
number of steps. At each step, the largest energy scale
is identified and block diagonalized with a unitary trans-
formation. This is repeated for the next highest energy
scale until the block sizes reduce to 1.

In both the WWF and SBRG, the total unitary trans-
formation implementing the diagonalization may be vi-
sualized as a tensor network acting on the matrix prod-
uct representation of the Hamiltonian. Viewing the RG
protocol in this way provides two main advantages: 1)
for a large class of MBL Hamiltonians, the RG flow may
be implemented entirely using matrix product operators,
which can speed up computation 2) the tensor-network
picture admits a holographic interpretation, which can
give physical insight into the entanglement properties of
the MBL system. By relating the network to a physical
geometry connecting the boundary p-bits to the bulk `-
bits, one can diagnose the localization of the Hamiltonian
using geometric features.

II. WILSON-WEGNER FLOW

In this section, we review the Wilson-Wegner Flow
(WWF) method implemented in Refs [14,23]. The gen-
eral WWF protocol, first developed for non-perturbative
QCD21, is a way to continuously flow the Hamiltonian to-
wards its diagonalized form by applying a continuously-
varying unitary transformation. In typical real-space RG
schemes, one coarse-grains the degrees of freedom to ob-
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tain an effective low-energy Hamiltonian. In contrast,
the WWF preserves the number of degrees of freedom
while decoupling those that are separated by large en-
ergy scales. Roughly speaking, one can think of WWF
as introducing an energy scale β, and then perform-

ing a similarity transformation Hβ = UβHU
†
β so that

the “dressed” Hamiltonian Hβ describes only processes
that correspond to an energy transfer of β or less.20 The
flow towards higher β then moves towards progressively
smaller energy scales.

The procedure begins by separating the Hamiltonian
into diagonal (H0) and off-diagonal (V ) terms with re-
spect to a physically-motivated basis14:

H(β) = H0(β) + V (β) (4)

The anti-Hermitian generator of the transforming uni-
tary is defined to be

η(β) = [H0(β), V (β)] (5)

The differential equations governing the flow are

dU(β)

dβ
= η(β) (6)

dH(β)

dβ
= [η(β), H(β)] (7)

with initial conditions U(0) = 1 and H(0) = H. From
the above, one observes that the WWF is a nonlinear flow
that proceeds more slowly as the Hamiltonian is nearly
diagonalized. The total transformation up until scale β
is performed by

U(β) = T
{

exp

(∫ ∞
β

dτη(τ)

)}
(8)

where T orders the operators by increasing β. The out-
put of the flow are the desired quantities H(∞) and
U(∞).

To get some intuition for what the WWF does, one can
explicitly write out the matrix elements of the generator

ηjk = (εj − εk)Vjk (9)

where εi are the diagonal elements of H0. We see that the
generator weights the matrix elements of the off-diagonal
part by the energy separation of the associated states.
The evolution of the matrix elements of the Hamiltonian
are thus governed by

dHjk

dβ
=
∑
m

(εj + εk − 2εm)HjmHmk (10)

Note that the WWF procedure generically introduces
new interaction terms. While this may seem undesirable,
this formulation also enables one to integrate past reso-
nances in the diagonal terms that would otherwise com-
plicate perturbative treatments of MBL Hamiltonians14.

FIG. 1: a) A schematic of the matrix product represen-
tation of the original Hamiltonian evolving under an infinite
stack of infinitesimal unitary transformations. The total uni-
tary transformation U(β) is a composition of the infinitesimal
dU(βi) implemented at each step. b) The final unitary ten-
sor network may be contracted with an `-bit eigenstate matrix
product state to yield a tensor-network transformation that
acts on the p-bit state. For states which are not rotated at a
particular step, the local `-bit index may be brought down to
a smaller β, as visualized by lowering the yellow dot. Adapted
from [23]

Hence, the power of the WWF RG lies in its non-
perturbative capabilities. The final product of the WWF
is not a renormalized Hamiltonian but a Hamiltonian
that is diagonalized or nearly-diagonalized so that even
first approximations capture the physics. Note that the
RG “time” parameter is related to the energy scale being
addressed in the Hamiltonian as β ∝ 1/E2.

We shall now discuss how the WWF may be adapted
using a tensor network formalism, as done in the study
by Yu et. al.23 The final similarity transformation of
the Hamiltonian may be viewed as a chain of unitary
operations performed on the eigenstates

〈E|. . . U(β2)U(β1)HU†(β1)U†(β2) . . .|E〉 = (11)〈
(U†(β1)U†(β2)E

∣∣H∣∣(U†(β1)U†(β2) . . . )E
〉

(12)

To simulate this efficiently, one can represent the
Hamiltonian and unitary transformations using matrix
product operators. The matrix product operator (MPO)
representation of a matrix is defined as a factorization of
the matrix into a product of smaller tensors. This is
straightforward to construct for Hamiltonians written in
terms of local operators. MPOs are visually denoted by
a chain of blocks representing local tensors, connected
by bonds that represent the contracted indices (see Fig
1a). Programatically, one can think of a basis of four 2x2
matrices living at each site of the MPO so that perform-
ing various operations translates into manipulations of
the coefficients of these small matrices. This allows one
to avoid working with exponentially large matrices. For
instance, extracting the diagonal terms of the Hamilto-
nian (the first part of a WWF step) corresponds to set-
ting the coefficients of the off-diagonal 2x2 matrices to
0. To actually implement the WWF, one can evolve the
flow equations by introducing a small ∆β and expanding
H(β+∆β) and U(β+∆β) accordingly. The Hamiltonian
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is diagonalized when β(εi − εj)2 ∼ 1.
Fig. 1 shows a visual representation of the TWWF

procedure. In the work by Yu and colleagues, they inves-
tigated the disordered random-field Heisenberg model in
Eq. 1 (without any extra interaction terms) with L = 32
sites and an initial J = 1. A similar WWF procedure
was carried out by Pekker et. al14 with the same Hamil-
tonian, but without using MPO technology. The findings
of the two studies are summarized below:

• Scale-Invariant Couplings: The probability dis-
tribution of the emergent couplings J normalized
by the median value is independent of the physi-
cal range of the coupling14. For small couplings,
the probability distribution evolves smoothly to-
wards a “1/f”-type distribution in the localized
phase (P(J) ∼ 1/J) and a uniform distribution in
the ergodic phase (P(J) ∼ 1).

• Operator spreading: The spread of the horizon-
tal operator size r when transforming the p-bits to
the `-bits mimics the logarithmic spread of entan-
glement in the localized phase r(β) ∼ log(β/β0)
and the Lieb-Robinson bound in the delocalized
phase r(β) ∼ β

1
2 . This suggests that informa-

tion about the entanglement dynamics in different
phases is imprinted on the WWF flow dynamics.

• Energy Scales: The variance V (β), defined to be
the average off-diagonal element of H(β), can be
used to deduce the energy scale being probed at
each RG step. Yu et. al. found that the change
in energy scale is reduced at an exponential rate,
but the distribution of the rate is broader for the
MBL phase. Furthermore, the minimum energy
scale is roughly constant for small disorder, indi-
cating level repulsion (ergodic phase) but increases
with the disorder strength in the localized phase,
as expected.

• Emergent Bulk Geometry: The “size” of the
tensor network in TWWF decreases exponentially
with vertical distance (defined below) in the local-
ized phase but slows in the ergodic phase.

We will elaborate more on this last point. One of the
benefits of the tensor network formalism is that it allows
one to generate a geometric picture of how the `-bits
emerge from the WWF flow. To define an emergent ge-
ometry of the network, one needs to define a measure of
vertical distance that captures how far along one is in
the diagonalization process with increasing RG time. A
natural choice is to use the rate at which the off-diagonal
terms of the Hamiltonian decrease

DU (β) =

∫ β

0

√
Tr(η(τ)η†(τ))

dim(H)L
dτ (13)

where DU (β) is the vertical distance of the unitary tensor
network up until RG time β, Tr

(
η(β)η†(β)

)
captures the

progression η → 0, and dim(H)L is a rescaling factor
present to map Tr(1) to 1.

One can now examine the evolution of the proper-
ties of the tensor network with distance DU , such as
its “size.” The measure of bulk size used by Yu, et.
al. is the number horizontal tensor bonds that do not
have unit bond dimension, which they call the “circum-
ference.” The bond dimension is the number of indices
contracted between two adjacent tensors in an MPO. A
unit bond dimension indicates that a particular unitary
chain dU(β) has separated into two independent com-
ponents. This indicates that the adjacent `-bits have
been mostly disentangled. One finds that in the localized
phase, the circumference decreases exponentially while in
the ergodic phase, the coefficient of the exponential de-
cay approaches 0. This can be understood intuitively
by recalling the meaning of the flow parameter. The
flow parameter characterizes the energy scale that one is
disentangling at each RG step. Hence, the exponential
decay of the circumference in the MBL phase reflects
the scarcity of random “resonances” in the spectrum,
while these rare regions proliferate in the ergodic phase.
Deep in the MBL phase, one finds a tensor network bulk
that is “segmented” with spatially distant points largely
disconnected23.

A comparison of the performance of WWF with other
methods like Jacobi rotations for diagonalization or bi-
partite matching was performed in Ref [14], with the
conclusion that the WWF produces the most local uni-
tary. The computational complexity of the TWWF im-
plementation scales polynomially in the bond dimension.
Interestingly, both studies of WWF found that the bond
dimension deep in the MBL phase is small and bounded.
This is likely related to the connection between the re-
duced spread of entanglement in the localized phase, and
the efficiency of simulating the dynamics classically2.
The idea of MBL systems being accessible to efficient
classical simulation reappears in the following survey of
a related RG diagonalization procedure.

III. SPECTRUM BIFURCATION RG

The spectrum-bifurcation RG method (SBRG), devel-
oped in Ref [22], can be seen as a discrete approximation
to the regular WWF flow. Rather than defining a unitary
transformation as a function of a continuous parameter,
a discrete sequence of block-diagonalizations is executed,
with the leading energy scale being targeted at each step.
The systematic elimination of the highest energy scales
is reminiscent of the aforementioned WWF as well as the
hierarchal structure of relevant many-body resonances in
recent real-space RG treatments15,19. The output of the
SBRG procedure is the Hamiltonian written in terms of
an approximate set of eigenstates in MPS representation.
These eigenstates show the local behavior expected of the
new LIOMs in the MBL phase.

There are other methods for producing the MPS rep-
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resentations of eigenstates, the most well-known of them
being density matrix renormalization group (DMRG).
DMRG is designed to produce ground states, though it
has been generalized to target highly-excited states as
well. The advantage of the SBRG is that it provides a
more efficient, albeit less accurate, procedure for finding
all eigenstates. The boost in efficiency is derived from
the fact that the SBRG relies on Clifford gates, which
are known to be computationally economical to imple-
ment. Another motivation for the SBRG comes from its
holographic interpretation, which gives geometric mean-
ing to the RG flow. In this framework, a Clifford circuit
maps the the boundary (physical) degrees of freedom to
the bulk (emergent) degrees of freedom which are the
conserved LIOMs.

To illustrate the method, we begin with a general set
of Hamiltonians of the form

H =
∑
[µ]

h[µ]σ
[µ] (14)

where µ is a multi-index, σ[µ] is a Pauli array of opera-
tors, and h[µ] is the associated coefficient. Any spin or
fermion model in an arbitrary number of dimensions can
be written in this manner. For instance, the Hamiltonian
in Eq. 1 can be written in the above form since both the
field terms and interaction terms may be written as a
sum of Pauli strings. In that case, [µ] keeps track of the
index of the Pauli operators in the Pauli string. As an
example,

hiσ
z
i → h300...(σ

3 ⊗ 1⊗N−1) + h0300...(1⊗ σ3 ⊗ 1⊗N−2) + . . .

Jxijσ
x
i σ

x
j → h110...(σ

1 ⊗ σ1 ⊗ 1⊗N−2)

+ h0110...(1⊗ σ1 ⊗ σ1 ⊗ 1⊗N−3) + . . .

Hence, Eq. 14 captures a wide range of possible Hamil-
tonians including those with multi-qubit and/or nonlocal
interactions.

To execute the SBRG, we will:

1. Pick the largest energy scale, which is the largest
value of h[µ] in the Hamiltonian.

2. Block-diagonalize the leading term using Clif-
ford group rotations so that it becomes H0 =
hmaxσ

3[0... ]. This bifurcates the spectrum into high
energy E ' |hmax| and low energy E ' −|hmax|
sectors.

3. Classify the remaining terms in the Hamiltonian
into the two blocks. This is done by applying a
Schrieffer-Wolff transformation thats terms so that
all terms in the Hamiltonian commute to at least
second-order. Now all terms have been classified
into the two blocks.

4. Separate the part of the Hamiltonian that is not
part of H0 and repeat the procedure with this part.

Let us now examine the steps in more detail. Block-
diagonalization is executed using Clifford group rota-
tions, which rotate Pauli strings into other Pauli strings.
A Clifford rotation is applied to the leading energy term
in the Hamiltonian is rotated so that

σ[µ]max → R†σ[µ]maxR = σ3[00... ] (15)

where σ3[00... ] represents the tensor product of σ3 with
a series of identity matrices. Note that the appropri-
ate transformation to apply R is operator dependent.
Strictly speaking, one need not apply a rotation that
places the σ3 operator at the first qubit; indeed, one can
apply a rotation that preserves the locality present in the
physical Hamiltonian. However, it is helpful to organize
the indices in the order that they are block diagonalized
for illustrative purposes.

The Clifford group may be generated by the π
4 (C4)

phase gate such that

RC4
(σ[µ]) ≡ exp

(
iπ

4
σ[µ]

)
=

1√
2

(1 + iσ[µ]) (16)

It can be shown that its adjoint action yields

R†C4
(σ[µ])σ[ν]RC4

(σ[µ]) ={
σ[ν] if σ[µ], σ[ν] commute

iσ[ν]σ[µ] if σ[µ], σ[ν] anticommute
(17)

Using this, one can transform any Pauli string into any
other Pauli string. As an example, consider a term of the
form σ[λ][µ] where the first set of indices λ ∈ {0, 3} and
the latter indices µ ∈ {0, 1, 2, 3}). Suppose that the first
µ index is µ = 1. Then one can diagonalize the term by
applying a transformation as follows:

σ[λ]1[µ] RC4
(iσ[λ]2[µ])

−−−−−−−−−→ σ[0... ]3[0... ] (18)

Then, swap operations may be applied to bring σ3 to
any position within the string. Hence, we have a set
of operations sufficient to perform our successive block
diagonalizations.

Consider the form of the Hamiltonian after the first
block-diagonalization. A transformation R is applied to
the entire Hamiltonian so that H → H ′ = R†HR and
the leading energy term becomes H0 = hmaxσ

3[µ]. The
Hamiltonian can then be split up into terms that com-
mute with H0 and terms that anti-commute with H0.

H = H0 + ∆ + Σ (19)

where ∆ represents the commuting terms of the form
σλ[ν] with λ ∈ {0, 3}, ν ∈ {0, 1, 2, 3} and Σ represent the
anti-commuting terms of the same form where λ ∈ {1, 2}.
Notice that all terms in H must fall into the two classes
∆ and Σ. Since ∆ contains commuting terms, it lives
within the diagonal blocks. So one needs only to sort
the terms of Σ into one of the two blocks |hmax| and
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−|hmax|. This may be done by applying a Schrieffer-
Wolff transformation,

S = exp

(
− 1

2h2
max

H0Σ

)
(20)

Expanding S to second order in hmax and applying the
similarity transformation yields

H = H0 + ∆− 1

2h2
max

Σ−1H0Σ (21)

= H0 + ∆ +
1

2h2
max

H0Σ2 (22)

All of the above terms commute and therefore we have
block diagonalized the Hamiltonian to second order.
Note that the second order approximation is justified for
sufficiently large hmax, which is good approximation for
an MBL system with strong disorder (and hence, large
separation in energy scales). Hence, the SBRG provides
an efficient method of finding eigenstates deep in the lo-
calized phase, but begins to fail near the transition to
the delocalization.

Grouping the terms ∆ + 1
2h2

max
H0Σ2, one has

H = hmaxσ
3[0... ] +

∑
[µ]

hλ[µ]σ
λ[µ] (23)

The first term is identified as an emergent quantity while
the second term is subsequently block-diagonalized with
finer granularity in the next SBRG step. The reason we
can identify σ3[0... ] as an emergent LIOM is because its
energy scale is much higher than its local neighbors, so it
is unlikely to be flipped as one moves towards lower fre-
quencies. Hence, it remains untouched by the rest of the
SBRG procedure. Because the SBRG allows new terms
to be generated, it allows one to overcome limitations
associated with conventional closed-form RG. The final
result is a diagonal Hamiltonian of the form

H =
∑

[λ=0,3]

h[λ]σ
[λ] (24)

from which one can immediately read off the spectrum
from h[µ].

A visualization of the SBRG procedure is shown in Fig.
2a, as well as a example of an RG step for the disordered
quantum Ising chain, given by the Hamiltonian

H = −
∑
i

Jiσ
1
i σ

1
i+1 +Kiσ

3
i σ

3
i+1 + hiσ

3
i (25)

with Ki, Ji, hi as random independent variables drawn
from identical distributions of the form

P (v)dv =
1

Γ0v

(
v

v0

)1/Γ0

dv for v ∈ [0, v0] (26)

where v is a placeholder for the relevant random coupling
constant. Γ0 sets the global disorder strength whereas v0

sets the individual coupling strength.

FIG. 2: a) Schematic of the iterative block-diagonal proce-
dure of SBRG from higher to lower energy scales. b) Visual
outline of the basic SBRG procedure applied to the disordered
quantum Ising model. The Pauli string associated to the lead-
ing energy term is represented in red, whereas the commuting
terms ∆ are in blue and the anti-commuting terms Σ are in
green. H0 is diagonalized by R, and the emergent qubit is
shown as a red dot. The block off-diagonal terms associated
with J1 and J2 are treated perturbatively and a Schrieffer-
Wolff transformation S yields the effective couplings. H0 is
left untouched by S. Adapted from [22].

The final output of SBRG procedure are product
eigenstates in the emergent `-bit basis, |{τi}〉 = |τ1〉 ⊗
|τ2〉⊗ . . . . To obtain the eigenstates in terms of the origi-
nal basis, one needs to reverse the unitary transformation
applied by the SBRG,

∣∣ψ{τi}〉 ' URG |{τi}〉 where

URG =
∏
k

RkSk (27)

is the total unitary transformation performed in the flow.
To get a sense of the performance of the SBRG in

identifying the emergent LIOMs, one can analyze how
local the Hamiltonian is. This can be done by examining
the decay of the coupling constants in the interaction
terms in Eq. 2.

Like the TWWF RG procedure, SBRG also admits a
holographic interpretation since it is mediated by a series
of Hilbert space-preserving unitary transformations. It
turns out the predominant contributions to URG come
from the Clifford gates (with negligible rotations from
the Schrieffer-Wolff transformations), and so the entire
flow can be approximated as a random Clifford circuit22.
Unsurprisingly, the locality of the Clifford operators re-
flects the degree of localization in the Hamiltonian. The
Clifford stabilizersii are primarily concentrated in the UV
(high energy) regime, reflecting the ability of the SBRG
to disentangle the bulk qubits efficiently. Longer stabi-
lizers that span more physical qubits are rare, and only
appear in the IR (low energy) regime in systems near

ii They are stabilizers in the sense that every eigenstate in the
physical Hilbert space is stabilized by τ̂i to ±1 such that
τ̂i |ψτi 〉 = ± |ψτi 〉
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MBL criticality. For instance, when K0 = 0 and J0 = h0,
one is at the marginal MBL critical point of the trans-
verse field Ising model, and consequently, observes the
spread of the stabilizers. Interestingly, at late RG time,
the procedure yields a long stabilizer string which corre-
sponds to the Jordan-Wigner transformation that maps
the TFIM to free Majoranas! Performing a more quan-
titative study of the localization length of the stabilizers
reveals that the probability distributions of the lengths
decrease. Specifically, deeply within an MBL phase, the
probability decreases exponentially while closer to the
marginal MBL critical point, the probability decreases
like a power law.

Let us now examine the holographic geometry that
arises from the SBRG of an MBL system from a more
intuitive perspective. In our holographic model, we will
plant the physical degrees of freedom on the boundary
of some circular geometry and the emergent degrees of
freedom within the bulk interior. For the disordered
MBL system, the RG flow is approximately mediated
by Clifford gates, each of which identifies an emergent
qubit. The energy scale of the emergent qubit is char-
acterized by the Clifford gate’s depth within the bulk of
the circuit, which one associates to a radial position in
the bulk. Then the Clifford circuit manifests as a disen-
tangler network mapping the boundary eigenstates (IR)
to an emergent bulk product state (UV). The transfor-
mations in the network depend on the state selected on
all of the emergent UV qubits. This is because the se-
lected state locates the system at a certain energy den-
sity in the spectrum, affecting the IR transformations,
and this UV-IR mixing is encoded in the many-body
terms of the `-bit Hamiltonian. The result is a geometry
that appears largely fragmented, with nearby boundary
degrees of freedom becoming mixed by transformations
but far-separated qubits remaining disconnected. A vi-
sual representation of this is shown in Fig. 3. Note that
this characterization of the geometry is analogous to the
fragmented geometry found in the TWWF study.

IV. CONCLUSION

In summary, we have discussed two new recent imple-
mentations of Hamiltonian-space RG for studying MBL
systems. These RG protocols are designed to recast the
MBL Hamiltonian in terms of its emergent LIOMs, pro-

viding stronger evidence of the emergent integrability
of MBL systems. Both methods generate the RG flow
through a succession of unitary transformations that pro-
gressively eliminate large energy scales, which may be
understood as creating a hierarchy of relevant interac-
tions based on the many-body level spacing. Further-
more, the RG methods are compatible with large systems
sizes—a feature useful to the study of the MBL phase in
the thermodynamic limit. The first method discussed
(TWWF) takes advantage of tensor network technology
to perform the unitary transformations efficiently, while
the second method (SBRG) offers a further boost in effi-
ciency by performing a discretized, bounded flow at the
cost of accuracy, which decreases in the strong disorder
limit. A unique feature of these Hilbert space-preserving
RGs is that the flow may be understood as being medi-
ated by a holographic tensor network. This interpreta-
tion allows one to understand the mapping between the
p-bits and emergent `-bits geometrically. The studies
discussed found that the entanglement properties in the
MBL phase leave an imprint on the structure of the ten-
sor network bulk. An important observation is the con-
nection between the “area-law” entanglement present in
the MBL phase, the fragmentation of the bulk geometry,
and the computational efficiency associated with classi-
cal simulation of the RG flow. By borrowing intuition
from holographic duality, one could potentially better
understand MBL systems and the many-body localized
transition.

FIG. 3: Fragmented holographic geometry of an MBL sys-
tem under the SBRG. Yellow blocks represent the Clifford
gates, blue dots the physical qubits, and red arrows the emer-
gent qubits. Adapted from [22].
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