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I. INTRODUCTION

Most systems that occur naturally have time-
independent Hamiltonians. The common procedure is to
plug in the Hamiltonian in Schrödinger’s equation, ob-
tain a basis of time-independent eigenstates and express
the time-evolution of the system in terms of this basis of
eigenstates. In the case of Floquet systems, the Hamil-
tonian is time-dependent and periodic, with period T :

H(t) = H(t+ T )

This makes our procedure more complex, since the eigen-
states won’t be time-independent anymore and instead of
a definite energy they will have a quasienergy ε that is
defined up to periodicity: ε = ε+ n 2π

T for any integer n.
This, among other reasons related to the topology of the
system described below, will make the study of the uni-
tary time-evolution operator U(t) more useful than only
studying the Hamiltonian H. It satisfies Schrödinger’s
equation with h̄ = 1:

i
d

dt
U(t, t0) = H(t)U(t, t0)⇒ (1)

⇒ U(t0 + T, t0) = T e−i
∫ t0+T
t0

dt′H(t′) (2)

where U(t, t0) is the unitary time-evolution operator
given initial data at time t0, for 0 ≤ t0 < T . The choice
of initial time t0 doesn’t really matter because any initial
time will be related to time 0 by a unitary transforma-
tion:

U(t0 + T, t0) = U†(0, t0)U(T, 0)U(0, t0) (3)

Since we are interested in the quasienergy of the system
and unitary transformations preserve the quasienergy,
we can safely choose t0 = 0 from now on and simplify
the notation to U(t) := U(t, 0).

Let’s find the time-dependent eigenstates. We first find
the eigenstates at a specific point in time (say T ) and
then find the eigenstates at any other point in time by
evolving these for a time t using the time-evolution op-
erator U(t):

U(T )|φα〉 = e−iεαT |φα〉 (4)

Now we have the eigenstates φα at T so we evolve them
to a later time t:

|ψα(t)〉 = U(t, 0)|φα〉 (5)

These are called Floquet eigenstates5,6, and they are pe-
riodic:

|ψα(t+ T )〉 = U(t+ T )|φα〉 = U(t)U(T )|φα〉 = (6)

= U(t)e−iεαT |φα(t)〉 = e−iεαT |ψα(t)〉 (7)

where we decomposed the evolution from 0 to t+ T into
0 to t and then t to T . Here we can see explicitly in
the exponential that any choice of quasienergy with the
periodicity as above gives the same result.

A more useful way to working with the unitary time-
evolution operator is decomposing it into a term that tells
us what happens at the end of each period and a term
that tells us what happens within one period. Due to
Floquet’s theorem7, we can decompose the unitary time-
evolution operator as:

U(t) = Φ(t)e−iHF t,Φ(t) = Φ(t+ T ) (8)

where HF is the Floquet Hamiltonian (different from H
!), an effective Hamiltonian that will be most useful for
us, since it’s time independent and applying it evolves
the system forward by T and is the term that captures
the behavior at the end of each period. The term that
deals with the evolution within a period is the unitary
operator Φ(t); it is thus called “micromotion” operator.
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Notice that if we plug in t = 0 in equation 8 we get
Φ(0) = U(0), but U(0) = U(0, 0) = 1 is just the identity,
since there is no change from time 0 to time 0. Therefore,
Φ(T ) = Φ(0) = 1, so since Φ(t) starts and ends at identiy
it is a “unitary loop”. Even though it starts and ends at
the identity, it can have a complicated behavior in be-
tween, and studying this behavior will be important for
determining the topological characteristics of the system.

As we have seen, the periodic nature of the Hamil-
tonian in Floquet systems requires a more complicated
treatment than we would usually need for time-
independent Hamiltonians. However, this added
complexity gives us new phenomenon that do not have
a non-periodic counterpart: single-particle systems have
nontrivial topology2, many-body Floquet localization is
achieved9–13 and localized interacting phases8 arise from
broken symmetries or nontrivial topologies.

II. BASICS OF TOPOLOGY

Before diving into results about the topology and
symmetry of Floquet systems we will have a brief review
about these two topics. Feel free to skip it.

Topology is a mathematical tool that allows us to study
when two objects can be deformed into another in a con-
tinuous manner. In 3D imagine we have have one 2D
surfaces made of some stretchy material. We will say
that they are “topologically equivalent” or “homeomor-
phic” if we can start with one of them and deform it
(without glueing parts of it together nor piercing holes
or cutting it) into the other. The common example of
this is the continuous deformation between a coffee mug
and a donut that we can see in figure 1. The key point
is that both only have one hole, so if you deform either
without glueing or piercing you will end up with some
other shape that will always have a hole. Therefore, we
can say that all objects with just one hole are topologi-
cally equivalent and that they all belong to the class of
objects with one hole.

A topological invariant that will come in handy later
is called the “winding number”. It basically counts
how many times a curve wounds around a point. For
example, take three curves γ1(x) = (cos(x), sin(x)),
γ2(x) = (cos(2x), sin(2x)), γ3(x) = (cos(3x), sin(3x)).
These have domain [0, 2π], which can be thought of as a
circle S1, so we get different ways the circle S1 describes
curves on the real plane R2. Moreover, for x ∈ [0, 2π]
the curve γ1 will go around the point (0, 0) once, the
curve γ2 will do it twice, and the curve γ3 will do it
three times. So γ1 has winding number 1 around the
origin, γ2 winding number 2, and γ3 winding number
3. This would work the same for any point inside the
disk x2 + y2 < 1, since the curves also wound around
them the same number of times. On the other hand, if

FIG. 1: Homeomorphism between a coffee mug and a donut.
Modified from4

we pick a point outside of this disk, the curves are not
wounding around them, so the winding number is 0.

Another concept that will be useful later is that of
two Hamiltonians being “homotopically equivalent”. For
two functions f, g : M → N , for some domain M and
target space N , this just means that we can deform one
continuously into the other. In general, there is a linear
homotopy h(f, g) given by:

h : M × [0, 1]→ N,h(x, s) = (1− s)f(x) + sg(x) (9)

Notice that at s = 0, h(x, 0) = f(x) and at s =
1, h(x, 1) = g(x), and h is continuous. So one might think
“there’s always a homotopy between any two Hamiltoni-
ans!”. The point is that we might require extra prop-
erties on those Hamiltonians, and then the domain or
target space might not be the same. In that case, if we
try to do a linear homotopy, the endpoint might just be
outside of the target space we are working on, so it’s not
a valid homotopy.

III. TOPOLOGY OF SINGLE-PARTICLE
FLOQUET SYSTEMS

A remarkable result in Floquet theory is that even
Floquet systems with only one particle have interesting
topological properties (i.e. nontrivial topology) Harper
et al.1 and references therein.

We will focus on Floquet systems on a crystal lattice,
meaning there is a discrete spatial periodicity apart
from the temporal periodicity of the Hamiltonian.
Single-particle Floquet systems with discrete spatial
translation symmetry are very similar to the case of an
electron in a crystal studied by Bloch. Since Floquet



3

systems have discrete temporal periodicity, if they
also have discrete spatial periodicity, they are called
“Floquet-Bloch” systems18. As such, many Floquet-
Bloch systems exhibit phenomenon that have already
been studied in the spatial crystal case (Type I Floquet
systems). We focus on those Floquet systems that do
not have a non-driven counterpart and exhibit behavior
unique to the driven case (Type II Floquet systems).
In particular, driven systems are topologically different
from non-driven systems. This means that the difference
is very fundamental and is not just a perturbation of
a non-driven system. Moreover, it allows us to classify
Floquet systems according to their topological invariants.

A. The RLBL model

As an example we will study the RLBL model de-
scribed by Rudner et al.2. Take a system consisting of
a two-dimensional 6 × 4 lattice with a time-dependent
Hamiltonian that makes a particle hop from their cur-
rent point in the lattice to a nearest neighbor: 1. To
the left, 2. Upwards, 3. To the right, 4. After the 4th
step, we go back to 1, since the Hamiltonian will have
completed the full period T . This is illustrated in figure
2. If we start at a point in the center of the lattice, after
a full period we will go back to the starting point (blue
arrow). If we start at the third point in the upper edge
of the lattice, diagram 1 tells us to move left, 2 tells us
to move up (but we cannot, since it’s the upper edge), so
we do not move, 3 tells us to move to the left (we now
move from the second on the top to the first), 4 tells us
not to do anything (the first vertex doesn’t have a down-
ward yellow line in step 4). So on the edge, we have a
leftwards movement (green arrow), and a similar reason-
ing gives us a rightwards movement on the bottom (red
arrow). This gives us a chirality (a tendency to rotate)
on the edge modes, which is one of the properties used
to characterize systems. We will see that this chirality is
actually a topological property intrinsic to the system.

This system follows the time-dependent Hamiltonian2:

H(t) =
∑
k

(c†k,Ac
†
k,B)H(k, t)

(
ck,A
ck,B

)
(10)

H(k, t) = −
4∑

n=1

Jn(t)(eibn·kσ+ + e−ibn·kσ−) + δABσz

(11)

where c†k,α is a creation operator of a Bloch state with

crystal momentum k on a sublattice α = {A,B} and
Jn controls the hopping from site B to its neighbor A,
σ± = (σx ± iσy)/2, where σx, σy, σz are the Pauli matri-
ces acting on the sublattice space, and the vectors {bi}
are given by b1 = −b3 = (a, 0), b2 = −b4 = (0, a) and
a constant sublattice potential δAB = εa − εB , with εα

FIG. 2: 4 step lattice-hopping Floquet system. Source: J.
Montana-Lopez, after Rudner et al.2.

the energy at filled (A) or empty (B) sites. For a simpli-
fied model from Rudner et al.2, we can choose δAB = 0.
The term that controls the particle-hopping tendency,
Jn is some value J for the n-th direction (1.Right-left,
2.Bottom-top, 3.Left-right, 4.Top-bottom) and 0 in the
other directions.

Figure 2 c) describes the Floquet energy spectrum in
terms of the crystal momentum, of this lattice model.
The red and green lines correspond to the chiral modes,
which are linear in momentum ( dεdk = ± 1

T )2, while the
blue line corresponds to the bulk modes, with Floquet
operator the identity and quasienergy 0. We see that the
difference in quasienergy in the edge lines in one period
(this is called the “quasienergy gap”) is high, so small
perturbations will only change the diagonal lines quan-
titatively: maybe instead of lines they will be somewhat
curved, or maybe the quasienergy gap will be a little bit
smaller or larger (see the dashed lines in figure 3), but it
will still have a quasienergy gap.

FIG. 3: Quasienergy diagram of a perturbed 4 step lattice-
hopping Floquet system. Source: J. Montana-Lopez, after
Rudner et al.2.

If we consider the lattice as a whole, the edge modes
are localized at different ends of the lattice, so local
perturbations can not mix the edge modes to open a
gap. Continuing with the analogy of the coffee mug and
the donut, the chirality in the edge modes is like the hole
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in the donut, which will be present in any continuous
deformation of the donut, and the blue loops in the bulk
are like a quirky engraved inscription on the face of
the coffee mug, just an accidental accessory. Therefore,
chirality is a topological invariant of the system, while
the loops in the bulk are not. Another way to say this is
that the system has a stable “phase” with “topologically
protected” edge modes. This just means that if the
topology of the system is preserved then the edge modes
will appear.

Chirality also gives us a reason why we really needed to
study the unitary time-evolution operator: the chirality
in the 4-step lattice-hopping Floquet system can not be
characterized by the Floquet Hamiltonian. If we take any
point not on the edge of the lattice (i.e. in the bulk, the
middle), after one full period we are back to the starting
point (blue line)2. Since the Floquet Hamiltonian only
measures by timesteps of length T , if the system is the
same after one period T , nothing has changed. So the
unitary time-evolution operator is the identity, for peri-
odic boundary conditions:

U(T ) = 1⇒ HF = 0

Since the Floquet Hamiltonian is time-independent,
this would mean that it’s zero for all times, for periodic
boundary conditions. But the zero Hamiltonian doesn’t
make things evolve, and we just saw that the edge
points have chirality. So a particle on the edge will still
go around the edges and the system will be evolving,
which would contradict the Floquet Hamiltonian being
0. This is because, as we mentioned earlier, the Floquet
Hamiltonian deals with the behavior of the system
at the end of one period, it doesn’t have anything
to do with what happens within one period. The
evolution within a period is given by the micromotion
operator Φ(t). In static system, there is a bulk-edge
correspondence that allows us to find the edge properties
from the invariants of the bulk (with periodic boundary
conditions), but this doesn’t hold in time-dependent
Hamiltonians. Therefore, the Floquet Hamiltonian with
periodic boundary conditions cannot capture topological
behavior like chirality, so we will need new beautiful
mathematical tools like K-theory and cohomology16.

B. Classification of Floquet systems

We will be focused on Floquet Topological Insulators
(FTI), which are Floquet systems on a lattice, so there
is a discrete spatial symmetry. In order to better
understand the kinds of FTIs that there exist it is
necessary to find some general properties shared by
many Floquet systems that can serve as a sort of “tag”
in a classification. These tags need to be stable under
small perturbations of the system so that they can
group many similar systems together and we do not end

up having a tag for every single problem. Topological
invariants are an example of these general properties,
and we will extract some from Φ(t) and some from HF .

In the setting of a 2D translation invariant lattice with
periodic boundary condition, the lattice momentum is
a useful quantum number because Φ(t) will be block-
diagonal in k = (kx, ky), so we can decompose Φ(t) into
Φ(kx, ky, t), the restriction of Φ(t) to the (kx, ky) block,
for each block. So Φ(kx, ky, t) is periodic in kx, ky, t
with periods say Kx,Ky, T , so that kx ∈ [0,Kx), ky ∈
[0,Ky), t ∈ [0, T ). Now we can map each of these inter-

vals to the angle of a circle, for example with θx = 2π kx
Kx

so that θx ∈ [0, 2π]. If we do the same for the other
three coordinates, we get a map from S1 × S1 × S1 to
Φ(kx, ky, t). As we saw earlier, different embeddings of
the circle can give different winding numbers, so we can
define a topological winding number for Φ. This is done
in Rudner et al2 following Bott et al.19:

W[Φ] =
1

8π2

∮
dtdkxdkyTr(Φ

∂
t Φ[Φ†∂kxΦ,Φ†∂kyΦ])

(12)

This is another tag used for the classification of Floquet
systems because each winding number will define a
“micromotion phase”. In particular, nondriven systems
will always have zero winding number, so it is a really
powerful tool. Not only it allows us to identify if a
Floquet system has nontrivial topology, but also allows
us to identify whether we have found a previously
unknown kind of Floquet system: look up the winding
number of the Floquet systems people have already
found, and if you find a system with a different winding
number from those, then it’s an example of a new class
of Floquet systems.

We can also find topological invariants from the Flo-
quet Hamiltonian HF .In the case of static Hamiltonians,
there is already a way to classify systems according to
a topological invariant called the Chern number of the
filled energy bands. The definition of the Chern number
is not very elucidating for our purposes, but we can gain
insight into how it’s used by means of examples. In the
static case, the Chern number of an energy band equals
the difference between the net chirality of the edge
modes traversing the gaps above and below the band2.
The sum of the Chern number will be a topological
invariant of the system. In the case of Floquet systems,
the Chern number is still a topological invariant, but it
can not predict the chirality of the edge modes alone.

Suppose we are given a system and we ask ourselves:
will this system have chirality? For time-independent
Hamiltonians, or generally for systems that reach
equilibrium, there is a general framework that given the
Chern number of the bands of the system tells us the
absolute chirality that the system will have. However,
this argument (spectral-flow) relies on the fact that
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FIG. 4: Phase bands of time-evolution in single-particle Flo-
quet systems. Source: J. Montana-Lopez, after Rudner et
al.3.

there is a lowest band from which we can start counting,
but in periodic systems there is no lowest band, as the
spectrum is periodic in quasienergy.

In the static case, the discrete symmetries in the
system are time-reversal (antiunitary), particle-hole con-
jugation (antiunitary) and chiral symmetry (unitary)3.
In time-dependent systems, these symmetries will act
on the Hamiltonian and the time-evolution unitary
operator U(t) instantaneously. Studying whether the
system has these symmetries and whether the square of
the antiunitary symmetries give ±1 allows us to classify
the system using the Altland-Zirnbauer (AZ) symmetry
classification.

However, this classification of FTI is insufficient for
Floquet systems, as we have seen that there will be other
topological invariants coming from the micromotion op-
erator Φ(t). There will also be topological invariants
coming from U(t) as a whole. If U(t) has N energy bands
and Pn(k, t) is the projector from U(t) to its n−th eigen-
state, then its Fourier decomposition is3:

U(k, t) =

N∑
n=1

Pn(k, t)e−iφn(k,t) (13)

and we call φn(k, t) = εn(k)T the “phase bands”. We can
see examples of these phase bands in figure 4. Subfigures
a) and b) are topologically equivalent, since the bands
in b) can be continuously straightened out. Moreover,
time-independent systems will only have linear bands, so
the interesting ones for us will be those that can not be
straightened out3. For example, subfigure c) has a topo-
logically protected singularity because the intersection of
the bands can not be straightened out, so this tells us
that the system must be driven, i.e. not static.

The last way to classify FTIs uses a mathematical
theory called K-theory16. The gist of the problem is that

FIG. 5: Space of single-particle unitary operators with an
obstruction (black spot). Source: J. Montana-Lopez, after
Harper et al.1.

now we think of the Hamiltonian itself as a point in the
space of possible Hamiltonians with an energy gap, in
each dimension and symmetry class. Then, if we perturb
this Hamiltonian a little bit we get a new Hamiltonian,
meaning we move from one point to a nearby point in
this space. Therefore, if we find a continuous way to
deform one Hamiltonian into another, we say that they
are homotopically equivalent, and they belong to the
same class.

So in the static Hamiltonian case we classify the Hamil-
tonians based on whether we can deform them into other
Hamiltonians or not. In the time-dependent case, all uni-
tary operators are connected, so they would all be in the
same class1, which is not a great classification. But if
we assume that the system doesn’t have a boundary, and
that there are gaps in the quasienergy at the endpoint,
then we can have distinct classes of unitary operators.

Figure 5 a) shows the space of unitary operators, and
we can see three different paths U1, U2A, U2B with the
same start and different endpoints, regions W1,W2, from
Harper et al.1. These two regions can correspond to Flo-
quet Hamiltonians with different Chern numbers (so they
are topologically different in the way described above), so
U1 cannot be homotopically deformed into U2A, other-
wise the quasienergy gap between the two regions would
close. But we have already seen that results from HF

cannot fully describe the topology of Floquet systems, so
there is a more interesting result related to the micro-
motion. The black disk is an obstruction, so U2A cannot
be continuously deformed into U2B , unless it is wound
back to the start and then follows the path for U2A, as in
subfigure b). This is the classification of Floquet systems
that we want: fixing HF , what are the possible micro-
motions? It turns out that the classes of micromotions
can be defined by loops that they would need to have
to transform into another. Using K-theory16, the equiv-
alence classes of these loops give a way to classify the
micromotions.
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IV. MANY-BODY FLOQUET LOCALIZATION

Until now we have been working with single-particle
systems. Adding more interacting particles will give us
interesting results about localization.

For example, in a closed Many-Body Floquet system,
one could expect that at long times we would achieve
the state of maximal entropy, i.e. that in which the
value of all local expectation values is time-independent
and independent of the starting state20. Since all
states would be available, we consider this the infinite
temperature state. However, there are mechanisms to
prevent this thermalization. One of them is Floquet
Many-Body Localization (MBL)9–13. The idea is that
there will be subsystems that interact with each other
by receiving and transferring energy in a stable way,
so that the system does not reach thermalization, but
rather keeps this local exchange of energy going. The
operators in these subsystems are called “l-bits”14 and
they allow for Floquet MBL systems that are stable
under small perturbations.

The technique of studying the homotopies of unitary
operators U(t) that we just saw for single-particle
systems work as well for many-body systems. Here, the
regions W1,W2 would correspond to different (Many-
body) Floquet Hamiltonians. It could be that one region
only preserves one kind of symmetry, and the other
region preserves another kind of symmetry, so crossing
the boundary between them would mean delocalizing the
system17. On top of that, there would be an analogous
study of the obstructions and the different U2A, U2B as
above.

Further work has shown that in driven Many-Body
Ising models, four phases of matter arise. Figure 6 shows
these phases in terms of two parameters of a binary
drive8. The paramagnet and spin glass are well-known
non-driven phases and the Floquet symmetry-breaking
phase (SB) and Floquet symmetry-protected topological
phase (FSPT) are entirely new phases of matter without

a non-driven counterpart. SB systems are also known as
time crystals because they break time-translation sym-
metry. A review on this was done by Khemani et al.15.

V. CONCLUSION

We have reviewed several results on Floquet theory
that highlight the new topological properties that Flo-
quet phases have, and how the micromotion operator en-
capsules many of them. Moreover, using tools like the
Winding number or the phase bands, we are now able
to determine whether a system’s topology is the same as
that of systems with static Hamiltonians, or whether it
is more complex. We learned several methods of clas-

FIG. 6: Four phases of a binary driven Many-Body Ising
model from8. Source: J. Montana-Lopez, after Khemani et
al.8.

sification for Floquet systems according to topological
invariants, homotopies between Hamiltonians or unitary
operators, phase bands and group cohomologies. Finally,
we learned about the different phases of binary drives
in Floquet systems. New directions for research include
finding a complete “periodic table” of Floquet Topolog-
ical Insulators, or studying how the bulk invariants are
related to the invariants from the edge modes.
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