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the cases and classify the phases of the undriven Kitaev chain according to the value of the topological
invariant. We discuss Floquet theory as applied to quantum systems. We review how Majorana end
modes can be induced by time-periodic driving of various parameters of the Kitaev chain even when
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invariants that count the number of periodic driving-induced Majorana modes at Floquet eigenvalues
±1 separately. We discuss the divergence of the number of induced end modes as drive frequency
decreases. We learn that time-reversal symmetry breaking perturbations disturb the Majorana end
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electron-phonon interactions and random noise in the chemical potential on the induced end modes.
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I. INTRODUCTION

The use of topological invariants to identify and clas-
sify phases of matter has been an active and exciting
area of research in condensed matter physics1–3. Typ-
ically, this technique has been applied to systems that
have gaps in the bulk spectrum to understand and ex-
plain the emergence of robust zero energy modes at the
boundaries. The topological invariant, generally an inte-
ger, counts the number of species of the boundary zero
energy modes. The range of the topological invariant
is decided by the dimension of the physical system and
the symmetries it possesses. The strength and generality
of the topological invariant as a classification technique
arises from the fact that the invariant does not change
under perturbations to the system as long as the bulk
spectrum remains gapped and the symmetries are pre-
served.

Seminal work in the 1980s4,5 explaining the topological
origin of the quantization of conductance in the quan-
tum Hall effect germinated this entire field and since
then this technique has been applied to many other sys-
tems like two- and three-dimensional topological insu-
lators and wires with p-wave superconductivity. In this
paper, we will concern ourselves with the latter, i.e., one-
dimensional p-wave superconducting wires.

Among topological systems, there has been significant
excitement about many-body systems with a particu-
lar kind of zero energy boundary mode called Majorana
modes. Such modes are manifest in a toy model called
Kitaev chain6 modelling a one-dimensional p-wave super-
conducting wire. The interest in studying Majorana end

modes (MMs) was spurred on by a proposal by Kitaev
and Preskill7 outlining a way to realise quantum com-
puting with topological qubits that are based on non-
Abelian anyons and are protected against decoherence.
Non-Abelian anyons can be realised in topological states
of matter, specifically those that support Majorana end
modes. The realization of isolated Majorana modes has
been a long sought-after goal in experimental condensed
matter physics.

Over time, topological classification has evolved from
a technique used to provide elegant explanations for pro-
found physics to being used as a guide to construct phases
that display non-trivial and exciting physics. In the
recent years, driven and out-of-equilibrium many-body
quantum systems have garnered a lot of interest and,
quite naturally, the topological properties of these sys-
tems have also been studied. The general problem of un-
derstanding many-body quantum systems with arbitrary
time-dependence is quite difficult and remains unsolved
but inroads have been made into understanding a partic-
ular class of time-dependent systems - periodic systems.
Such systems are handily analysable by Floquet theory
and realisable with modern experimental techniques.

Topology in Floquet systems can arise in many
flavours, just like in time-independent systems8. For ex-
ample, it has been shown that it is possible in theory
to induce anomalous edge states in Chern insulators9,10

as well as Majorana modes in otherwise topologically
trivial phase of the Kitaev chain. Ref. 11 demonstrates
the latter, i.e., generation of Majorana end modes by
time-periodic driving of the Kitaev chain. The authors
construct a novel topological invariant that counts the
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number of induced end-modes separately at the Floquet
eigenvalues ±1. These induced modes can persist even in
the presence of electron-phonon interactions at non-zero
temperature and random noise in the chemical potentials
(given that these effects are sufficiently weak).

In this paper, we will review the paper11 ‘Floquet gen-
eration of Majorana end modes and topological invari-
ants’ by Thakurathi et al. which proposes using periodic
driving to generate Majorana modes. Before the review,
we will study the techniques used in it to build up a
base that will allow us to understand the paper. In Sec-
tion II, we will discuss the appearance of Majorana end
modes in the undriven Kitaev chain and see how they
are related to the topological invariant. In Section III,
we will understand how Floquet theory is used to analyse
time-periodic systems and finally, in Section IV, we will
provide context for the paper being reviewed, understand
what is novel about it, and dive into the details.

II. MAJORANA END MODES IN UNDRIVEN
KITAEV CHAIN

This section draws heavily from the excellent collection
of lecture notes? at https://topocondmat.org/. Readers
are also encouraged to explore the papers by Matthew
Radzihovsky12 and Praveen Sriram13 on the Physics 470
website wherein they discuss related topics.

The Kitaev chain is a tight-binding lattice model of
spinless electrons with a nearest-neighbour hopping am-
plitude γ, a p-wave superconducting pairing ∆ between
neighbouring sites, and a chemical potential µ. The
Hamiltonian is,

H =−
∑
n

µ
(
2f†nfn − 1

)
+
∑
n

γ
(
f†nfn+1 + f†n+1fn

)
+
∑
n

∆
(
fnfn+1 + f†n+1f

†
n

)
(1)

where fn are annihilation operators for fermions on the
nth site of the chain (n ∈ {1, . . . , N − 1}). The fermionic
operators satisfy the usual anti-commutation relations -
{fm, fn} = 0, {fm, f†n} = δmn. We now construct the
operators describing the Majorana modes

a2n−1 = fn + f†n, a2n = i
(
fn − f†n

)
(2)

Note that we have two Majorana operators per
fermion. This holds in general - Majorana modes always
appear in pairs and hence there are an even number of
them and the construction procedure is reminiscent of
representing a complex number as an ordered pair of two
real numbers. Due to this, one might think that it is im-
possible to have an ‘isolated’ Majorana mode as physical
systems are made out of electrons and they always corre-
spond to a pair of Majoranas. We will see soon how we
can be clever in designing our Kitaev chain Hamiltonian
in order to ‘split’ a fermion and isolate two Majorana
end modes at different ends of the chain. The Majorana

operators satisfy {am, an} = 2δmn and are Hermitian,
unlike the fermionic operators. In terms of the Majorana
operators,

H = i
∑
n

(Jxa2na2n+1 − Jya2n−1a2n−2)

+ i
∑
n

µa2n−1a2n

Jx =
1

2
(γ −∆) , Jy =

1

2
(γ + ∆) (3)

From the Hamiltonian in this form, we can immedi-
ately look at some limits and draw some exciting conclu-
sions. Consider the limit ∆ = −γ, µ = 0. The Hamilto-
nian for these parameters does not feature the terms a1

and a2N and hence the chain has two zero energy modes,
localized at its ends. In the other limit, ∆ = γ = 0, µ 6= 0,
we basically pair up all of the Majoranas and hence are
left with no zero energy modes living at the edges of
the chain. This indicates that the presence of the end
modes is decided by a competition between ∆ and µ and
this will be reflected in the phase diagram of the system.
Also, these zero modes are not just something that ap-
pear when we consider very special values for the param-
eters. They actually persist over a range of values. This
feature is called topological protection and it’s where our
discussion of the topology of the Kitaev chain begins.

A. Topological protection of Majorana end modes

Topology is the study of continuous transformations.
Two gapped quantum systems are called topologically
equivalent if their Hamiltonians can be continuously de-
formed into each other without ever closing the gap. One
might also want to impose more specificity; some sym-
metry of the system should also be preserved during the
continuous transformation. A topological invariant is a
quantity that does not change under continuous transfor-
mations inside the set of gapped Hamiltonians. Hence,
two systems/phases are topologically equivalent if and
only if their topological invariants are equal. A topologi-
cal phase transition arises when the topological invariant
changes and, by definition, the gap must close then.

In the context of the Kitaev chain, we first explore the
symmetries of the chain. The Hamiltonian of the Kitaev
chain is can be cast into the form,

H =
∑
nm

f†nAnmfm +
1

2

(
Dnmf

†
nf
†
m +D∗nmfmfn

)
(4)

As fn are fermionic operators, the matrix D is antisym-
metric. Grouping the fermionic operators into a vector

F =
(
f1, . . . , fn, f

†
1 , . . . , f

†
n

)
, we can derive the following

relations,

H =
1

2
F †HBdGF (5)

https://topocondmat.org/
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HBdG =

(
A D
−D∗ −A∗

)
(6)

We can see from this form that the Kitaev chain has
a symmetry called particle-hole symmetry. The particle-
hole symmetry is unlike the ubiquitous unitary symmetry
that most readers may be familiar with. The symmetry
operator is given by P = τxK where K is the complex
conjugation operator (in the basis in which HBdG is de-
fined in 6) and τx is the block Pauli-x operator (defined
on the block-structure of HBdG shown in 6) and the fol-
lowing relation holds,

PHBdGP−1 = −HBdG (7)

This implies that the spectrum of the Kitaev chain must
be symmetric about zero. The Kitaev chain is actually
equivalent to a spin- 1

2 XY chain placed in a transverse
magnetic field. The Jordan-Wigner transformation,

a2n−1 =

n−1∏
j=1

σzj

σxn

a2n =

n−1∏
j=1

σzj

σyn (8)

changes the Hamiltonian into

H = −
∑
n

(
Jxσ

x
nσ

x
n+1 + Jyσ

y
nσ

y
n+1

)
−
∑
n

µσzn (9)

The Kitaev chain is also time reversal symmetric. The
time reversal symmetry operator is just complex conju-
gation K acting on the spin Hamiltonian; all objects get
complex conjugated, including i→ −i. This also implies
that

a2n → −a2n, a2n+1 → a2n+1 (10)

The Kitaev chain also possesses a parity symmetry cor-
responding to a reflection of the system about its mid-
point. This is a unitary symmetry that commutes with
the Hamiltonian. Such symmetries generally don’t af-
fect the topological characteristics of the system but can
make computation of the spectrum easier by reducing the
dimension of the problem at hand.

With the symmetries in mind, we can now understand
why the edge modes are topologically protected. Con-
sider a pair of edge modes at zero energy. Particle-hole
symmetry precludes the possibility of individually shift-
ing one of the modes away from zero energy as the spec-
trum must remain symmetric about zero. Thus, the only
way the zero modes can be moved away from zero is by
coupling them. But this is also prohibited by their spatial
separation and the presence of the energy gap in the bulk
that does not allow any zero-energy excitations along the
length of the wire. Hence, the only way to get rid of the
MMs is to close the bulk-energy gap and that is exactly
when a topological phase transition occurs. The MMs
are protected by particle-hole symmetry and by the bulk
gap.

B. Bulk topological invariants for Kitaev chain

Majorana end modes are intimately related to the bulk
properties of the chain. This is an example of the bulk-
edge correspondence principle holding; we can define
topological invariants - integers that are calculated from
the properties of a gapped bulk phase and characterise
the presence and properties of the Majorana end modes.
As pointed out before, topological classification of phases
is done by differentiating them on the basis of the value
of the TI.

Let us consider a more general form of the Kitaev chain
(this will be useful later for understanding the effect of
Floquet driving on the chain described by equation 1),

H = i

2N∑
m,n=1

amMmnan (11)

where M is a real antisymmetric matrix. This general
Hamiltonian also has particle-hole symmetry (i → −i,
am → am under the action of P) and hence a spec-
trum symmetric about zero. The symmetric eigenvec-
tors are complex conjugates of each other, iMxj =
λjxj and iMx∗j = −λjx∗j . The zero eigenvalues must
be even in number and their eigenvectors can be chosen
to be real because iMxj = 0 =⇒ iMx∗j = 0. Time-
reversal symmetry however is not guaranteed and only
holds if Mmn = 0 whenever both m,n are even or both
are odd. Like the Kitaev chain in 1 we assume that the
system is discrete translation invariant and has periodic
boundary conditions so that Mmn = M(m−n)(mod 2N),0.
We define fermions by using 2, and Fourier transform

them fk = 1√
N

∑N
n=1 fne

ikn where k goes from −π to π

in steps of 2π
N . Then the Hamiltonian can be written in

momentum space as

H =
∑
k

(
f†kf−k

)
hk

(
fk
f†−k

)
hk = a2,kτ

y + a3,kτ
z (12)

where τy, τz are the 2× 2 Pauli-y, Pauli-z matrices and
ai,k are real and periodic functions of k and the corre-

sponding dispersion is given by Ek =
√
a2

2,k + a2
3,k. For

example, for the Hamiltonian in 1,

a2,k = 2∆ sin k

a3,k = 2 (γ cos k − µ) (13)

We define the first invariant in the following manner -
we map hk to a vector Vk = a2,kŷ + a3,kẑ in the y − z
plane and define the angle φk = tan−1 (a3,k/a2,k) made
by the vector with respect to the z-axis. The topological
invariant W ∈ Z (for a gapped phase) is the winding
number of the vector Vk around the origin

W =

∫ π

−π

dk

2π

dφk
dk

(14)
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Note that W is ill-defined for a gapless spectrum as Vk =
0 at some k. Also, W can only change as Vk passes
through 0. This does not happen for small changes in hk.
Hence, W is a good topological invariant in the sense that
it only changes if the gap closes. A phase is topological
if W 6= 0 and will have |W | zero-energy Majorana modes
at each end of a long chain. If W = 0, the phase is
topologically trivial and does not have any Majorana end
modes.

−2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 2.0

µ/γ
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FIG. 1: Phase diagram of the undriven Kitaev chain.
Adapted from Ref 11.

We can now make the phase diagram for the undriven
Kitaev chain 1 and classify the phases topologically. The
phase diagram is shown in Fig. 1. Considering the trans-
formed Hamiltonian 9, in the spin- 1

2 language, phase I
(II) corresponds to long-range ferromagnetic order of σx

(σy) and phase III corresponds to a paramagnetic phase
with no long-range order. The three phases are separated
by lines where the gap closes, i.e., Ek = 0 for some k. By
taking appropriate limits (such as µ� γ,∆ or µ� γ,∆),
we can see that W takes the values −1,+1, and 0 in
phases I, II, and III, respectively.

In general, the TI W can take on any integer value for
a general quadratic Hamiltonian 11. The Kitaev chain of
equation 1 only has nearest neighbour coupling and hence
the TI takes values from {−1, 0, 1}; models that have cou-
plings with longer ranges can display phases with values
beyond {−1, 0, 1}14 and hence many pairs of MMs. We
will see later that Floquet driving achieves exactly this15

by producing effective long-range interactions while pre-
serving time-reversal symmetry.

Also, W is only well-defined in the presence of time-
reversal symmetry. When time-reversal symmetry is bro-
ken, hk has terms proportional to τx,114, and the vector
Vk is no longer confined to the y − z plane as k goes
around the Brillouin zone and a winding number can no

longer be well-defined. But, it is possible to define a Z2-
valued topological invariant ν in that case (ν ∈ {−1, 1})
and this TI is called the Pfaffian invariant. It turns out
that at k = {0, π} hk is always proportional to τz. If the
spectrum is gapped such that hk 6= 0 ∀k and h0 = g0τ

z,
hπ = gπτ

z, then the invariant is given by

ν = sgn (g0gπ) (15)

As a time-reversal symmetry breaking perturbation is
introduced, typically pairs of end modes (at each end)
move away from zero energies symmetrically. Thus, in
the absence of time-reversal symmetry, the number of
MMs is not topologically protected but rather the parity
of the number of MMs is. In the case of the original Ki-
taev chain that we started out with, Phase I and II have
ν = −1 and Phase III has ν = 1.

III. FLOQUET THEORY

We will now study Floquet theory as applied to quan-
tum systems16,17. Consider a time-dependent Hamilto-
nian with a period T , H(t) = H(t+T ). By Floquet’s the-
orem, Schrödinger’s equation has linearly-independent
solutions of the form,

|φj (t)〉 = e−iεjt|φj (t)〉 (16)

where |φj (t+ T )〉 = |φj(t〉 and the quasienergies εj sat-
isfy

(H (t)− i∂t) |φj (t)〉 = εj |φj (t)〉 (17)

The evolution operator U(t) = T exp
(
−i
∫ T

0
H (t) dt

)
satisfies,

U (t+ T, t) = U (T, 0) |φj (t)〉 = e−iθj |φj (t)〉 (18)

where θj = εjT . An effective time-independent Hamilto-
nian can be defined using the relation,

U (T, 0) = e−iHeffT

Heff|φj (t)〉 = εj |φj (t)〉, 0 ≤ t < T (19)

The quasienergy spectrum is 2π/T periodic, akin to the
quasimomentum in Bloch’s theorem. When a system has
both discrete time and spatial translation symmetries,
the Floquet states are labeled as {εn (k)} where n is a
band index.

Because of the periodicity of the quasienergy spectrum,
the particle-hole symmetry now maps ε→ (−ε)

(
mod 2π

T

)
.

Unlike the time-independent case, there are now two spe-
cial points that are mapped to themselves ε = 0→ ε = 0
and ε = π

T → ε = π
T . Particle-hole symmetry can

now afford topological protection to edge states at these
quasienergies if there is a gap around them. Therefore, a
Floquet Kitaev chain can support two types of Majorana
end modes with eiθj = ±1. This feature of being able
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to support end modes at quasi-energies other than zero
is unique to periodically-driven systems and can lead to
new phenomena that do not exist in undriven systems.
For example, a discrete time-crystal can be realised in a
ε = π

T phase18.

We will now specify the general Floquet theory de-
veloped above for the case of a driven Kitaev chain.
For a general time-periodic Hamiltonian as given in 11,
M (t) = M (t+ T ). In the Heisenberg picture,

dan (t)

dt
= i[H (t) , an (t)]

= 4

2N∑
n=1

Mmn(t)an (t) (20)

If a is the column vector (a1, a2, . . . , a2N ) and M is the
matrix Mmn, the solution of the equation above is,

a (t) = U (t, 0) a (0) ,

where U (t2, t1) = T exp

(
4

∫ t2

t1

dtM (t)

)
(21)

In this particular case, because M (t) is anti-symmetric,
U (t1, t2) is real and orthogonal. The eigenvalues eiθj

of U (T, 0) then come in conjugate pairs (particle-hole
symmetry) (if eiθj 6= ±1) as U (T, 0)ψj = eiθjψj =⇒
U (T, 0)ψ∗j = e−iθjψ∗j . For eigenvalues eiθj = ±1, the
eigenvectors can be chosen to be real.

IV. FLOQUET DRIVING INDUCED
MAJORANA END MODES

The paper11 that we will review here discusses the gen-
eration of Majorana end modes by periodic driving of a
Kitaev chain. The use of periodic driving to produce Ma-
jorana end modes was first proposed by Jiang et al.19. As
we discussed earlier, the presence of long-range interac-
tions and time-reversal symmetry can lead to multiple
Majorana modes at each end and periodic driving can
effectively produce such a situation15. Having multiple
Majorana modes is attractive as an experiment could be
designed based on tuning the number of MMs and this
could lead to experimental signatures of the presence of
MMs that are more robust to disorder and thermal exci-
tations. In the work under review here, the authors study
the generation of end modes under various types of Flo-
quet drives. Floquet Kitaev chains can support MMs at
θj = 0, π; the authors propose novel topological invari-
ants that count the number of Majorana end modes at
θj = 0, π, respectively. The authors also study the effect
of breaking time-reversal symmetry on the end modes.
We will now proceed with our review and, actually, we
have already covered parts II and III and a portion of
part IV of the paper11 in our discussion above.

A. Finding end modes

MMs are eigenvectors of the Floquet operator U(T, 0)
with eigenvalues ±1 (in the infinitely long chain limit).
The authors diagonalise U(T, 0) and calculate a quantity
called the inverse participation ratio (IPR) to find eigen-
vectors that are localized at the ends and could be MMs.
For normalized eigenvectors,

∑2N
m=1 |ψj (m) |2 = 1, the

IPR is defined as,

Ij =

2N∑
m=1

|ψj (m) |4 (22)

If ψj is extended equally over all sites then Ij = 1/2N
and limN→∞ Ij = 0. On the other hand, if ψj is localised
over a distance ξ (which is of the order of the decay length
of the eigenvector and remains constant as N → ∞),
then |ψj (m) |2 ≈ 1/ξ over a region of length ξ and ≈ 0
elsewhere which means Ij ≈ 1/ξ which will remain finite
as N →∞. For a sufficiently large N , Ij will distinguish
between localized and extended states. Once the authors
find a state for which Ij � 1/2N , they check the profile
of |ψj (m) |2 to check if it is an end state. Finally, the
authors check if the form of |ψj (m) |2and the value of
IPR remains unchanged as N is increased.

As we mentioned earlier, the particle-hole symmetry
of the Kitaev chain means that eigenvectors can only
be moved from the eigenvalues ±1 symmetrically by a
coupling through the bulk (finite chain effect). With the
eigenvectors of U(T, 0) this manifests in the candidate
edge states with high IPR having eigenvalues e±iθ with
the deviation of the eigenvalues from ±1 being a measure
of the tunneling between the states localized at opposite
edges. After finding the end modes as described above,
the authors check if their wave functions are real in the
limit of large N (recall that eigenvectors with eigenvalues
±1 can be chosen to be real). The end modes are qualified
as Majorana modes if they satisfy three properties: their
Floquet eigenvalues equal to ±1, they are separated by a
finite gap from all other eigenvalues, they have real wave
functions. We will discuss now the effects of various types
of Floquet drives on the Kitaev chain.

B. Periodic δ-function kicks

The authors consider a chemical potential of the form,

µ(t) = c0 + c1

∞∑
n=−∞

δ(t− nT ) (23)

This Hamiltonian has time-reversal symmetry:
H∗ (−t) = H (t) ∀t. The Floquet operator can be
written as a product of two terms: an evolution with a
constant chemical potential c0 for time T followed by an
evolution with a chemical potential c1δ(t− T ),

U(T, 0) = e4M1e4M0T (24)
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where the matrices Mi are defined in the sense of equa-
tion 11. The authors actually use an unitarily-equivalent
symmetrized version,

U(T, 0) = e2M1e4M0T e2M1 (25)

The authors then proceed to diagonalise the Floquet op-
erator for a choice of parameters that would imply a Ki-
taev chain in the trivial phase III if there was no driving.
They observe (in Figures 2 and 3 of their paper) that
the periodic driving produces MMs. As the period of
the driving is varied the number of induced Majorana
modes changes and the number of MMs with eigenval-
ues near ±1 are labeled as N±, respectively. The au-
thors plot this in Figure 4 of their paper and notice a
trend that the number of Majorana modes increases, al-
beit non-monotonically, as the period is increased.

The quantities N± are expected to be topological in-
variants as the MMs with eigenvalues near ±1 are topo-
logically protected by the particle-hole symmetry and the
presence of gaps around these quasienergies; the only way
to change these integers is to close the quasienergy gaps.
The authors define two types of topological invariants:
one that gives the total number of Majorana modes at
each end of the chain and others that give the individual
values of N±.

Consider a system with periodic boundary conditions
where the quasimomentum is a good quantum number.
First the Hamiltonian is transformed into the (quasimo-
mentum) Fourier basis and then the authors define a Flo-
quet operator Uk (T, 0) (in a manner similar to eq. 25)
for each value of the quasimomentum based on the 2× 2
matrix hk from equation 12. From this they observe that
Uk (T, 0) can be equal to ±1 (and hence gapless) only if
k = 0, π and the driving frequency ω = 2π/T satisfies,

ω =
2π (c0 ± γ)

nπ − 2c1
(26)

for some n ∈ Z. The ± signs correspond to k = π and
0, respectively. Therefore the gap cannot close for any
value of k other than 0, π and that too only happens for
discrete values of ω.

For the first topological invariant, the authors define
an effective Hamiltonian,

Uk (T, 0) = e−iheff,k (27)

The choice of structure of Eq. 25 decides the structure of
Uk (T, 0) which in turn leads to hk having the following
form,

heff,k = a2,kτ
y + a3,kτ

z (28)

reminiscent of Eq. 12. Given this form, one can then
compute the winding number W as described in Eq 14.
As expected, this winding number counts the total num-
ber of Majorana modes at each edge of the chain. The
authors plot this in Fig. 6 of their paper where they vary
the driving frequency (to only have values that don’t sat-
isfy Eq. 26 in order to have a gapped phase) and compare

the winding number W with the numerically calculated
total number of MMs. The agreement is exact. An in-
teresting point to note is that in the limit of ω → ∞,
Uk (T, 0) becomes independent of k and therefore only a
single point is obtained in the (a2,k, a3,k) plane. This cor-
responds to W = 0 and this is consistent with authors’
observation that there is a maximum value of ω beyond
which there are no MMs.

For constructing the second topological invariant, the
authors start with the observation that k = 0, π play
a special role since Uk (T, 0) can be ±1 only at these
quasimomenta. It can be shown that,

U0 (T, 0) = eiπb0τ
z

Uπ (T, 0) = eiπbπτ
z

(29)

where they choose

b0 =
4 (c0 − γ)

ω
+

2c1
π

b1 =
4 (c0 + γ)

ω
+

2c1
π

(30)

Lω is defined as the line segment that goes from b0 to bπ.
Whenever an end of the line segment crosses an integer,
i.e., ω satisfies Eq. 26, a topological phase transition
occurs as U0/π (T, 0) = ±1 and the gap closes. In the
limit, ω → ∞, the line collapses to a single point 2c1/π
that is not an integer by construction and no Uk (T, 0) =
±1 meaning that there are no MMs. The second type of
topological invariant is defined in the following manner -
for any ω, the number of points z = n ∈ Z that lie inside
the line segment is equal to the number of MMs at each
end of the chain. Further, the numbers of points with n
odd and even will give the numbers of end modes with
Floquet eigenvalue equal to −1 and 1, respectively. The
authors plot the numerical verification of this in Fig. 4
of their paper. Fig. 7 which is reproduced as Fig. 2 here
shows a plot of the line segment Lω as a function of ω.

The authors generalise this invariant for arbitrary val-
ues of the chain parameters and c0 and non-integer val-
ues of 2c1/π. Assuming that bi are not integers, consider
all the integers lying in Lω. Let n>e (n>o ) and n<e (n<o ),
respectively, denote the numbers of even (odd) integers
which are greater than and less than 2c1/π. Then,
N+ =| n>e − n<e | and N− =| n>o − n<o |. The wind-
ing number is given by W =| n>e − n<e + n>o − n<o |.
Hence, W is generally not equal to the total number of
modes N++N−. The authors verify the invariant against
observations tabulated in Table I of their paper. Also,
with this invariant, it is clear to see that as ω → 0, the
length of the line segment diverges asymptotically and so
does the number of Majorana modes. This is expected
as longer periods correspond to longer range effective in-
teractions in the chain15 that can lead to more MMs.

For the special case of ∆ = −γ and c0 = 0, the authors
provide analytical constructions of the MMs and an ex-
plicit proof that the number of MMs is indeed governed
by the quantities b0, bπ, and 2c1/π .
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FIG. 2: Plot of b0 and bπ as a function of ω for a system
with γ = 1,∆ = −1, c0 = 2.5, and a periodic δ-function kick

with c1 = 0.2. Adapted from Ref 11.

The authors also study the effect of perturbations that
break time-reversal symmetry. As discussed earlier, in
this case the number of MMs is not protected as the
eigenvalues move away from ±1 symmetrically14 but the
parity of number of MMs is still protected. Indeed, the
authors observe the symmetric movement of the eigen-
values away from ±1. The deviation is small as the per-
turbation is small and the gap is still maintained but the
eigenvectors are no longer at ±1 and cannot be called
MMs.

The authors show that periodicity in the hopping and
superconducting terms can produce MMs too. In partic-
ular, they find that there is a MM at each end even in
the limit of large driving frequency unlike the previous
driving. The drive is,

γ = −∆ = γ0 + γ1

∞∑
n=−∞

δ (t− nT )

By calculating Uk (T, 0) just like the previous case and
considering the limit of T → 0, the authors find,

a2,k = −2γ1 sin k

a3,k = 2γ1 cos k (31)

which yields a winding number W = 1 and hence one
MM even in the T → 0 limit. The authors also provide an
analytical proof of this fact for a special set of parameters.

C. Simple harmonic variation

The authors discuss the case where the chemical po-
tential varies harmonically with t,

µ (t) = c0 + c1 cos (ωt+ φ) (32)

The Floquet operator is given by U (T, 0) =

T exp
(

4
∫ T

0
dtM (t)

)
same as before but in this case it

does not decompose nicely into a product of only two or
three operators; it has to be computed by discretising
the time period and then multiplying operators in a time
ordered way. Naturally, this is a more difficult numerical
computation problem.

However, the authors find that the qualitative features
of the MMs that arise in this case are similar to the case of
periodic δ-function kicks in µ. But an interesting variable
to consider here is the phase φ of the harmonic. The
Floquet operator depends on φ and is labeled as Uφ (T, 0).
It turns out that the eigenvalues (and hence the number
of MMs) are independent of φ. We can see this from the
fact that a shift in the phase is equal to a shift in time.
Hence,

Uφ (T, 0) = U0 (T + φ/ω, φ/ω)

= U0((T + φ/ω, T )U0 (T, φ/ω)

= U0 (T + φ/ω, T )U0 (T, 0)U−1
0 (φ/ω, 0)

= U0 (φ/ω, 0)U0 (T, 0)U−1
0 (φ/ω, 0) (33)

This means that Uφ (T, 0) is related to U0 (T, 0) by a
unitary transformation and hence they have the same
eigenvalues. This also implies that studying how an
eigenvector corresponding to a particular eigenvalue of
Uφ (T, 0) changes with φ is equivalent to studying how
that eigenvector changes with time under evolution with
U0 (φ/ω, 0). The effect of this evolution can be dramatic
and the authors highlight this in Fig. 10 and Fig. 11 of
their paper. In summary, Floquet driving induced MMs
can change form with time but they remain confined to
the edges and retain their quasienergies.

D. Effects of electron-phonon interactions and
noise

The authors point out that experimental systems can
have perturbations that do not have the same periodicity
as the driving term and this can potentially affect the
MMs. Consider a Majorana mode produced by driving
with a frequency ω. The quasienergy gap can be defined
as ∆E = ω∆θ/ (2π) where ∆θ is the gap between the
Floquet eigenvalues of the bulk modes and the Majorana
mode.

The authors assert that the MM survives if the phonon
frequencies ω

′
(mainly governed by the temperature) are

much smaller than the gap ∆E and the driving frequency
ω is much larger than ω

′
and the bandwidth. Note that
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this implies that the large number of MMs found at small
ω for the periodic δ-function kick drive in µ are not stable
against electron-phonon interactions.

The authors also did numerical studies of what hap-
pens when the chemical potential has a term that is uni-
form in space but varies randomly with time in addition
to the periodic δ-function kicks. They conclude that noise
in the chemical potential does not destroy the Majorana
modes if the strength of the noise is less than some value
which decreases with the driving frequency ω.

V. CONCLUSION

In this paper, we started out with a discussion of the
emergence of zero-energy Majorana modes in the un-
driven Kitaev chain and we discussed how these modes
are topologically protected by the particle-hole symmetry
of the chain and the presence of a bulk gap. We studied
the definition of bulk topological invariants that char-
acterise the number of Majorana modes and the phase

of the chain. Next, we discussed Floquet theory for
time-periodic quantum systems. Using this as a base,
we studied how Floquet driving can induce many Majo-
rana modes in a Kitaev chain that would otherwise be
in a trivial phase. We understood how the authors of
Ref. 11 tackled the numerical computation and search
for the zero-energy end modes. We discussed the ef-
fects of various types of Floquet driving on the periodic
driving-induced Majorana modes and the construction
of topological invariants that characterise these modes.
Breaking time-reversal symmetry resulted in the num-
ber of these modes not being topologically protected any
more but rather the protection shifted to the parity of
the number of modes. We also briefly discussed the ef-
fects of electron-phonon interactions and random noise
on the Floquet-generated Majorana modes. Note that all
our discussions here have been for a single-particle pic-
ture. Topological characteristics of Floquet systems with
interactions seems to be an exciting direction to study
ahead18,20,21.
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