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This report provides an review of the recent attempts on using the renormalization group (RG)
method to describe the many-body localization (MBL) transition, which describes the breakdown of
thermalization behavior, and hence the conventional statistical physics description, in systems with
strong disorder. In the first half of the report, we sketch out the derivation of the block decimation
RG rule and explain the results obtained in the decimation approach4–6. We then motivate the
RG rule of the toy model in Goremykina et al.8 and demonstrate how the RG rule gives rise to the
integral-differential equation that result in the final RG flow equation. We later on derive the scaling
behavior of the length scale according to the RG equation. Finally, we discuss through Dumitrescu
et al.9 that touch upon results from both approaches.
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I. INTRODUCTION

The ability to succinctly describe the behavior a
macroscopic interacting system using only a handful of
parameters lies at heart of many-body physics. While
deep in thermodynamic/quantum phases it may not be
too surprising that the system can be described by several
macroscopic variables due to central limit theorem, for-
mulating theories under similar paradigm in the vicinity
of phase transitions can be challenging due to fluctuation
at all length scales up to the macroscopic system size.

In his seminal paper1 in 1975, Wilson conceived the
scaling invariance at critical points due to the ab-
sence/divergence of length scales and put forward a el-
egant theory of momentum space renormalization group
(RG). Applying the essence of the RG method, namely
the invariance of theory under coarse graining and inte-
grating out degrees of freedom, to real space Hamiltoni-
ans, Kadanoff constructed a powerful tool2 to tackle the
critical behavior of Ising-like systems.

The many-body localized (MBL) phase has attracted
substantial interests, both theoretically and experimen-
tally due to its potential application to quantum com-
puting. Such phase is a class of many-body interact-
ing systems in which, contrary to conventional wisdom
from classical thermodynamics, thermalization behavior
is absent and memory of the initial configuration is re-
tained at late times. Contrary to equilibrium (ground
state) phases, the MBL phase is distinct in its dynamical
behavior3, for instance the vanishing of DC conduc-
tance, logarithmic growth of entanglement entropy and
the Poisson level statistics signifying a emergent integra-
bility.

Characterizing the nature of the MBL-thermalization
transition is both illuminating and challenging since
the conventional paradigm that focuses on the ab-

sence/presence of gaps does not work; the microscopic
picture of how fluctuations is present in the system across
transition is also vastly different.

The application of RG to the MBL transitions, nev-
ertheless, is not necessarily hindered by aforementioned
technical challenges as it only relies on the scaling in-
variace of the system. In fact, several RG approaches
have been proposed to study the property of the MBL
transition4–9. While each of them differs in the RG rules
which lead to different scaling behavior and falls short on
microscopic justifications, there are some overall agree-
ments among these approaches, and a convergence trend
towards reaching a final consensus is apparent. This
report serves as a review and comparison of these ap-
proaches.

We review the past works in a chronological order, as
later works typically build upon or refer to earlier works
for consistency checks. The first works that put together
a RG rule and provide a scaling behavior are by Vosk
et al.4 (VHA) and Potter et al.5 (PVP) These two inde-
pendant works theorize a similar block decimation proce-
dure and therefore result in practically identical scaling
behaviors, which is discussed in Sec. II A. Later on, Du-
mitrescu et al. (DVP) build upon their previous work5

and come up with a RG rule that relies less on ad hoc
heuristics and is perhaps more microscopically justifiable,
which we summarize in Sec. II B.

The previous block decimation approaches suffers from
the shortcomings that no analytic tools are readily exis-
tent to analyze the RG flow of the parameters. Therefore,
the scaling behaviors are only extracted from numeri-
cal simulations, which only extend up to system size of
∼ 106. In light of this, several later attempts seek to by-
pass matrix element calculation in the previous block dec-
imation framework and instead construct phenomenolog-
ical RG flows based on minimal models that incorporate
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the past intuition with the MBL transition, such as quan-
tum avalanche10 and the Griffith effect, which respec-
tively depict the behavior of thermal bubbles destroying
MBL phases and insulating bubbles causing sub-diffusive
transport in thermal phases. These models hence ab-
stract away the use of Hamiltonians to describe the sys-
tem. Zhang et al. provide the first analytically solvable
RG model under this framework by only keeping ther-
mal/insulating block lengths as the relevant variables7.
This method is further generalized and improved by
Goremykina et al.8 which takes into account the asymme-
try between the inclusion of thermal/insulating bubble in
a insulating/thermal bath. These works are summarized
in Sec. III A.

Goremykina et al.’s toy model gives a surprising
Kosterlitz-Thouless (KT) RG equation and indicates the
divergence of length scale to qualitatively disagree with
the finite-size simulation results of VHA and DVP. The
recent work by Dumitrescu et al.9 provides numerical
evidences that reconciliate the results from VHA/DVP
method with the predictions from KT scaling equations.
A more general argument that does not rely on the toy
model is also provided to arrive at the same KT RG equa-
tion. Various results from this work is finally summarized
in Sec. III B.

II. BOTTOM-UP APPROACH:
RENORMALIZING COUPLINGS

The essence of the block decimation approach is to
combine several local degrees of freedom (for instance
spin-1/2) into a block and assign it to be locally ther-
malizing or localized depending on entanglement rate,
namely the relative strength between coupling Γ and typ-
ical energy spacing ∆ of bare states within the block.
Slightly different from what is done in Kadanoff’s ap-
proach, no degrees of freedom are being integrate out dur-
ing each RG step, one only coarse grains the information,
as one can actually extract the block size from inspecting
the typical energy spacing. Each RG step involves select-
ing some blocks to merge into a bigger block, and modify-
ing the coupling between this block with other blocks by
inspecting the properties of the constituent small blocks.
The initialization of the coupling distributions between
blocks of size one and the RG rules that dictate how the
blocks combine is slightly different among each of the
works, which we shall go in more detail below.

A. VHA and PVP

For the sake of clarity, we first outline the RG rule
applied in VHA and later provide a comparison to that
in PVP. We also do not attempt to go in full detail in
deriving VHA or PVP’s RG rule, as many of the rules
for intermediate cases are not immediately justifiable and
are only applied after empirical self-consistency checks.

We do provide arguments for RG rules of the two ex-
treme cases, namely the combination between two ther-
mal blocks or two insulating blocks, since they cleanly
recover the scaling behavior of entanglement spreading
deep in the MBL and eigenstate thermalizing (ETH)
phases.

FIG. 1: The VHA model. Each block represents a finite seg-
ment of spins and is associated with a rate Γ which is pro-
portional to the inverse thermalization time and a coupling
strength g that characterizes the thermalizing/localization be-
havior of the block. The interblock rate Γij is defined by the
inverse time for the two blocks to fully relax. Each coarse
graining step involves combining the two blocks with the
strongest two-block rate together, with the new interblock
rates ΓL defined according to the RG rule (see text). For this
example the two-block rate Γ23 is assumed to be the largest
among Γij ’s, so block 2 and block 3 are decimated into a
larger block in this step of RG. Figure redrawn from Vosk et
al.4

1. VHA RG rules

The VHA scheme assumes a hierarchy of timescales
between the one block thermalization rates Γi and and
the interblock thermalization rates Γij . The assumption
is taken to be that a block must first thermalizes within
itself before becoming entangled with other blocks.

From the scaling behavior of entanglement time deep
in the two phases we can deduce the scaling of the di-
mensionless coupling g:

ETH : τ ∼ l,∆ ∼ 2−l, g =
1

τ∆
>> 1

MBL : τ ∼ e−l/l0 , l0 → 0,∆ ∼ 2−l, g =
1

τ∆
<< 1,

(1)

with l being the size of the system, and l0 the localization
length. Eq.1 demonstrates a clear separation of scales of
the parameter g in two phases, enabling a convenient
definition of the MBL phase transition to be around g ∼
1.

It is also noted that during the RG process, the hierar-
chy between the interblock rates and the intrablock rates
has to be maintained, which implies that the new block
rates after RG, such as ΓL and ΓR in Fig.1 has to be
slower than min(Γ1,Γ23) and min(Γ23,Γ4) respectively.
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The rates ΓL and ΓR is basically the ”three block rate”
Γ123,Γ234, namely the inverse entanglement time of the
three block system.

Keeping the hierarchy in mind, we proceed to motivate
the RG rules in the VHA paper. The coupling between
two blocks is assumed to be of the form

Ĵ12 = J12(A†1A2 + h.c.), (2)

where A1, A2 are on-site operators that located at the
interface between block 1 and block 2. The coupling
strength J12 is given in the original microscopic Hamil-
tonian and is generally of order W ∗O(1), with W being
the single-particle disorder strength.

When joining two MBL blocks, we expect relative
timescale to be W−1 � ∆−1 � (Γ12)−1, corresponding
to a weak coupling to a continuum. In such regime, the
relaxation timescale should be appropriately described
by the Fermi’s golden rule:

Γ12 ∼
∑
f1,f2

|J12|2|〈i1|A1|f1〉|2|〈i2|A2|f2〉|2δ(Ei1,i2−Ej1,j2),

(3)
where in, fn represent the initial states and the final
states of block n, respectively. For the energy conser-
vation to be matched, in and fn should be located in the
middle of the spectrum, and in should be close in terms
of energy with fn. Under this condition, it typically in-
volves flipping O(l) l-bits to get from in to jn, giving the
typical matrix element magnitude |〈i1|A1|f1〉| ∼ e−l/l0 .
Therefore, the two block rate Γ12 scales as

Γ12 ∼
W 2

∆12
e−2l12/l0 , (4)

where ∆12 is the energy spacing of the two-block system
that scales as ∆12 ∼ W/2l12 , and l12 is the size of the
two-block system which naturally satisfies l12 = l1 + l2.
One can go through a similar treatment to obtain the
one block rates Γ1 and three block rates Γ123 as in the
VHA paper, but the result can be obtained in a intuitive
(though less rigorous) sense by making the observation
that Γ12 actually only depends on its own properties and
not the history of the constituent blocks. That is to say
the one block rates, and hence the three block rates, can
be constructed in a similar manner:

Γ1 ∼
W 2

∆1
e−2l1/l0

Γ123 ∼
W 2

∆123
e−2l123/l0 .

(5)

The results in Eq.5 can be inverted to give the cor-
rect entanglement growth in the MBL phase: l ∼ S ∼
log(1/Γ) → Γ ∼ e−cl. One can also construct the RG
rule used in the VHA paper:

ΓL =
Γ12Γ23

Γ2
. (6)

For the opposite case of combining two thermaliz-
ing blocks, the timescale hierarchy becomes W−1 <∼
(Γ12)−1 � ∆−1 so the Fermi’s golden rule no longer cap-
ture the correct entanglement timescale in such regime.
The two block rates in this regime is simply given by the
Ohm’s law:

l12 ∝ (Γ12)−1 = (Γ1)−1 + (Γ2)−1, (7)

and the RG rule writes

(ΓL)−1 = (Γ123)−1 = (Γ12)−1 + (Γ23)−1 − (Γ2)−1. (8)

The above two rules are the only rules applied throught
the RG process in the VHA paper. The separation of
time scales is fuzzy when jointing thermalizing blocks
and localized blocks, so the authors have to construct a
somehow arbitrary set of rules that only justifies itself
after numerical consistency checks.

2. Initialization of the VHA scheme

Instead of fully specifying the microscopic Hamilto-
nian, the authors only initialize the ensemble with energy
spacings ∆ and coupling constants gij drown from a pre-
scribed probability distribution. The tuning parameter
is directly obtained from the probability distribution of
g, defined as 〈log g〉0. This approach lifts the necessity
to specify the relationship between localization length as
a function of disorder bandwidth, but as a drawback re-
sults in the inability to directly inspect the transition as
a function of physically measurable quantity |W −Wc|.
However, the scaling exponents of the lengthscale should
be nevertheless unaltered.

3. Results of VHA

Two fixed points are found in the VHA paper. One
corresponds to the infinite randomness point of MBL
phase where g vanishes exponentially, the other corre-
sponds to the fully thermal phase there g grows expo-
nentially with system size. The universal scaling form
is numerically shwon to be 〈log g〉(l) = ξf(l/ξ), with a
power-law divergence ξ ∼ 1/(g0 − g0c)ν and the critical
exponent ν ∼ 3.1. The transition also manifests itself in
terms of the transport behaviour. The scaling exponent
αtr in the relationship l ∼ τα ∼ ταtr

tr smoothly evolves
from αtr = 0.5 signifying the diffusive transport in the
ETH phase to αtr = 0 signifying the insulating behavior
in the MBL phase. It is noteworthy that VHA method
correctly recovered the Griffith effect, which predicts the
sub-diffusive behavior on the ETH side of the transition,
and the fact that the system is localized at the critical
point g0 = g0c

.
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4. Comparison to PVP

The RG laws in the PVP paper5 of the block rates
Γi are essentially identical to the VHA paper. The only
difference is that they take a different initialization con-
dition that incorporate the disorder bandwidth W as the
tuning parameter. The system considered in the PVP
paper reminiscent of a diordered Heisenberg chain:

H =
∑
i

hiσ
z
i + J(σxi σ

x
i+1 + σyi σ

y
i+1) + V σzi σ

z
i+1, (9)

where the on-site energy hi is uniformly sampled within
the disorder bandwidth [−W,W ]. The Hamiltonian is
first diagonalized in the single particle basis (V = 0), and
the coupling V is later turned on to obtain the matrix
element, which is of the form

V (x) ∼ V e−x/x0 , (10)

which x0 denotes the single particle Anderson localiza-
tion length x0 ∼ [ 1

2 ln(1 + (W/J)2)−1].
The scaling exponent PVP obtained after performing

the RG is similar to that from the VHA paper:

ξloc/L = f(L/ξ), (11)

with ξloc the length of the longest thermal block, and ξ
the emergent length scale that diverges as ξ ∼ 1/|W −
Wc|ν near the critical point, with ν ≈ 3.5.

B. DVP

Both aforementioned approaches, though self-
consistent, face difficulties in determining RG rules
between insulating and thermal clusters. Dumitrescu
et al, build upon the previous PVP paper, created a
modified RG method that is more justifiable in the
intermediate regime6.

Here we explain the setup of the DVP paper: the RG
operations still focuses on the relative scale between en-
ergy spacing ∆ and the coupling Γ of clusters of spin,
and the initialization also come from the same disordered
Heisenberg chain, as explained in Sec. II A 4. It is only
the RG steps in the DVP paper that is different from the
previous work. In order to circumvent the complexities
associated with jointing MBL blocks with ETH blocks,
the DVP RG rule only joins blocks when the resulting
block is thermal. The result when RG operation termi-
nates would be a single block when the system is in the
ETH phase, and order l blocks when the system is in the
MBL phase. The RG operation ensures that at any given
time all the blocks are locally thermal, and therefore the
coupling strengths are easy to compute:

Γij ∼ [maxi1∈i,j1∈jJij ]〈αi|Ai1 |βi〉〈αj |Aj1 |βj〉, (12)

where |α〉, |β〉 represent eigenstates and An represent
local operator at site n. The ETH hypothesis states

〈αi|Ai1 |βi〉 ∼ e−lsth/2 with sth a constant as a function
of on-site Hilbert space dimension. For spin 1/2 systems
sth = ln 2.

Despite the clean and well-motivated RG step formula-
tion, the only observable that one has access to regarding
the transition is the block entanglement entropy, which
can be naturally obtained as functions of block length.
Other observables, such as transport properties, are dif-
ficult to calculate. Nevertheless, the behavior of the en-
tanglement entropy itself almost gives as much informa-
tion of the transition as the previous works. The entropy
is found to lie on a universal curve:

s(L/2)/L = f(L/ξ), ξ ∼ 1/|W −Wc|ν , ν ∼ 3.2. (13)

The fluctuation of the entanglement σs also provides
another evidence that the critical point is localized, as
the fluctuation peaks in the ETH phase.

III. PHENOMENOLOGICAL APPROACH AND
THE KOSTERLITZ-THOULESS RG FLOW

The previous approaches, though physically justifiable,
suffers from finite size limitations. Due to the form of the
RG rules, the authors are not able to perform analytical
calculation that extends to l→∞, and are limited to sys-
tem size ∼ 106, the capability of existent numeric tools.

Due to this constraint, another route to tackle the RG
problem recently being pursued. The phenomenological
approach seeks to avoid constructing RG rules from any
microscopic models, and focuses on the analytical solv-
ability instead. The RG rules are far from justifiable if
one restricts to calculations in a ab initio sense, but they
do capture the large scale behvior of the ETH and MBL
phases.

A. Analytically solvable RG model

FIG. 2: The RG rule in Goremykina et al8. Within each RG
step, blocks with length below the cutoff length scale Ω gets
combined with its neighboring blocks of the opposite type into
a bigger block. The difference of the ”effective conductance”
gives rise to the parameter α and β.

The first solvable family of RG rules is proposed by
Zheng et al.7 and expanded by Goremykina et al.8. In
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these RG rules, the only parameters being retained are
the length of the blocks, and the most simplistic Ohm’s
law is assumed to described the RG process:

lInew = lIn−1 + αlTn + lIn+1

lTnew = lTn−1 + βlIn + lTn+1,
(14)

with a pictorical description in FIG.2.
For such artificial RG rules to emulate the actual MBL

and ETH systems, the parameters describing the effective
conductance α, β are set to satisfy the following condi-
tions: α � 1 � β and αβ = 1. The former condition
stems on the fact that localizing blocks always serve as
bottleneck in terms of transport, hence the ”effective re-
sistance of a localized block is much bigger than a ther-
malized block. Conservation of total length during the
RG process post the latter constraint.

As mentioned in FIG.2, each normalization step in-
volves combining a block of length Ω with its neighbor-
ing blocks to form a bigger block. The cutoff length scale
starts from 0 and finally reaches the total system length.

Below I extract the derivation of the RG integral-
differential equation in the paper by Goremykina et al.
from their supplement. Denote the number density of
thermal/insulating blocks when the cutoff is Ω = Γ to be
dNI/T

dl = n
I/T
Γ (l), and it follows that the total block num-

ber to be N
I/T
Γ =

∫∞
Γ
dln

I/T
Γ (l). For each step of RG,

blocks of length l ∈ [Γ,Γ + dΓ] are combined with their
neighbors, resulting in the reduction of the total number:

N
I/T
Γ+dΓ = N

I/T
Γ − (n

I/T
Γ (Γ) + n

T/I
Γ (Γ))dΓ, (15)

and a modification of the distribution n
I/T
Γ (l):

n
I/T
Γ+dΓ(l) = n

I/T
Γ (l) + n

T/I
Γ (Γ)dΓ[−2ρ

I/T
Γ (l)

+

∫ ∞
Γ

dl′ρ
I/T
Γ (l′)ρ

I/T
Γ (l − l′ − α/βΓ)],

(16)

where the first term in the square bracket representing
blocks of length l being combined with blocks of length
Γ to form a longer block, and the second term is the
result of generating blocks of length l after the merging

process, and the probability density ρ
I/T
Γ (l) is detined as

n
I/T
Γ (l)/N

I/T
Γ .

It can then be shown that after taking the rescaled

form Q
I/T
Γ (η) = Γρ

I/T
Γ (l) of the probability distribution

with η = l
Γ−1, one arrive at the following eigenfunctions

in the limit α→ 0

QIΓ(η) = γe−γη, QTΓ (η) =
1 + κ

(1 + η)2+κ
. (17)

The dynamics of the parameters η, γ gives the RG flow
equation:

dγ

d ln Γ
= −γκ, dκ

d ln Γ
= −γ(1 + κ). (18)

The RG flow equation can be recasted into the famous
Kosterlitz-Thouless RG equation11 that describes the 2D
XY model:

dK−1

dl
= y2,

dy

dl
= (2− πK)y, (19)

with K being the ratio between the spin stiffness and the
temperature and y the spin vortex fugacity. The detail
of the XY model is not important here, and we only note
the two important features of such RG equation: First,
there is a line of stable fix points. (y = 0,K ≥ 2/π in
the case of KT and γ = 0, κ ≥ 0 for the case in Eq. 2.
) Second, the divergence behavior of length scales is of

the form ξ ∼ ec/
√
|P−Pc|, with P being the temperature

in the KT transition, and disorder bandwidth W in the
MBL transition.

We here give a derivation of the scaling law from the
RG flow equation Eq. 17, which is omitted in the original
paper. Integrating over Eq.18 one obtains

γΓ − κΓ + ln(κγ + 1) = C ∼ C0(W −Wc). (20)

In the vicinity of transition, γ and κ can assumed to be
small and we expand Eq.20 to lowest order of κ to obtain
the relation

γΓ =
κ2

Γ

2
+ C0(Wc −W ), (21)

and the modified RG eqution:

dκ

d ln Γ
= −γΓ = −(

κ2
Γ

2
+ C0(Wc −W )) (22)

Initially κΓ is of order 1 so the C0(Wc−W ) term can be
dropped in Eq.22 and one obtains the scaling Γ ∼ e−2/κΓ ,
when κ2

Γ becomes comparable to C0(Wc −W ). the flow
slows down, the system approaches the fix point and
the RG process is terminated. Thus, ξ ∼ e−2/κΓtr with
κ2

Γtr
∼ C0(W −Wc) and we obtain the KT divergence of

lengthscale ξ ∼ ec/
√
W−Wc .

It is noted by the authors that such KT scaling would
be hard to observe in a finite size system. There is nev-
ertheless a scaling law that one can observe in a finite-
sized system, which is the scaling exponent of thermal
block probability distribution ρT (l) ∝ l−(2+κ). Close
to the critical point the fix point value κ vanishes as
∼
√
W −Wc, so a convergence to the ρT (l) ∝ l−2 could

be one signature in favor of the KT RG theory.

B. Phenomenological Kosterlitz-Thouless RG flow

A later work by Dumitrescu et al.9 removes the ne-
cessity to derive the RG flows from a somewhat artifi-
cial model. They consider the density ρ of the thermal
blocks and the localization length ζ (which is not the
emergent lengthscale that diverges at the transition) and
write down the first order contribution to each of them
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FIG. 3: The RG flow map derived in Dumitrescu et al9. The
line of fixed points corresponds to the MBL phase. The two
axes ξ and ρ represents the bare localization length and the
thermalizing block density respectively. A different set of pa-
rameters is used to obtain the RG flow equation in Goremyk-
ina et al.8, but they qualitatively describe the same physical
quantities.

during the coarse graining process, which are stated be-
low. First, the density of thermal block should grow in
the ETH phase and decay in the MBL phase, which give
the flow equation

dρ

dl
= bρ(ζ − ζc) + ..., (23)

where b is a constant of order 1. Second, the existence
of thermal blocks helps extending the localization length

after coarse graining, which yields the second RG flow
equation

dζ

dl
= cρζ..., (24)

again with c being a constant of order 1. These two
flow equation can be re-casted into the KT form and the
resulting RG flow is plotted in FIG.3.

The authors also attempt to reconcile the KT descrip-
tion of the transition with the DVP/VHA RG proce-
dure by looking at the probability distribution of block
length and discover the universal scaling of p(l) ∼ l−2.
Therefore, despite the fact that the bottom-up method
and the phenomogical method give different predictions,
these two approaches can still be compatible with each
other and a refined theory that unifies both approaches
awaits.

IV. CONCLUSION

We have provided an overview of several recent renor-
malization group approaches that studies the critical be-
havior of the MBL transition. The two major frame-
works, bottom-up block decimation method from well-
established microscopic models and phenomenological
method that provides easy-to-calculate RG flow equa-
tions, though provide intuition that conforms to past ex-
perimental and theoretical finds, have their respective
shortcomings. Thus, it might be necessary to combine
the two frameworks to give a more comprehensive and
justifiable RG rule to the MBL transition.
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