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Periodically driven (“Floquet”) systems are considered as promising candidates for exhibiting
orders in analogous to those traditionally studied in equilibrium statistical mechanics. Though in the
clean and non-interacting limit, Floquet systems are believed to only host the infinite temperature
ergodic phase, Floquet many-body localization induced by disorder could stabilize the nontrivial
phases. Here we show that, under the notion of eigensystem order, binary driven one dimensional
spin chains display paramagnetic (PM) and spin-glass (SG) phases, which are defined in parallel with
their equilibrium counterparts. Moreover, two phases that are completely new to driven systems
are spotted: the 0π phase and the π-SG phase. The results shed light on the rich phase structure
of periodically driven systems and open up a new area of research in both statistical mechanics and
condensed matter physics.
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I. INTRODUCTION

The idea of extending the notion of phase and phase
transition to closed/isolated quantum systems away from
equilibrium is of great interest in statistical quantum
mechanics and condensed matter physics. Remarkable
progress has been made both experimentally, especially
in cold atom systems2, and theoretically from various as-
pects, including the adoption of the well-established ran-
dom matrix theory for disordered many-body systems7,9.
Recently this idea has been thoroughly explored in
periodically driven quantum systems, namely Floquet
systems8,10, whose Hamiltonian is time-dependent and
satisfies H(t + T ) = H(t). Interestingly, though for
generic Floquet systems, thermodynamics predicts an en-
tropy maximizing state at late times where all static and
dynamic correlations become trivial and independent of
starting state, a recent work by Khemani et al.5 demon-
strates that, introducing disorders can localize spatial
modes and enable rich phase structures, some of which
are novel to driven systems and have no equilibrium coun-
terpart.

A. Thermalization and Localization

Thermalization in a closed quantum system is different
from an usual system with an external bath. While the
entire system experiencing unitary time evolution, for a
local subsystem, the rest of the system serves as an in-
ternal bath and eliminate local memory at late times,
bringing it to thermal equilibrium. Formally,

lim
t→∞

lim
V→∞

Tr[Oρ(t)] = lim
V→∞

[Oρeq(β, µ, ...)], (1)

where ρeq is the density matrix for the equilibrium ensem-
ble dependent on thermodynamic parameters (β, µ) set
by conserved densities in the initial state. The celebrated
notion of eigenstate thermalization hypothesis (ETH)3

ensures that eigenstate expected values agree with the
expected thermodynamic ensemble averages. In contrast,
many-body localization (MBL)1,4 systems do not reach
such thermal equilibrium and local properties fluctuate
strongly between states at the same energy density.

B. Floquet Basics

The dynamics of Floquest systems are governed by the
Floquet unitary UF ≡ U(T ), which is the time evolution
operator over one period:

UF = U(T ) = T e−i
∫ T
0
dt′H(t′). (2)

The Floquet Hamiltonian is defined via UF = e−iHF ,
which renders the Hamiltonian to be stroboscopically
time-independent on the eigenstate basis ofHF : HF |ν〉 =
Eν |ν〉. Eν is defined mod 2π/T and is thus denoted as
quasi-energy to distinguish from the regular conserved
energy. The Floquet version of ETH asserts that each
Floquet eigenstate thermalize to infinite temperature
β = 0. However, it has been shown that localization
can prevent such indefinite heating in many-body inter-
acting systems. Consider a system with an external drive
V cos(ωt) and a local disorder scale ∼ W . For weak
enough amplitude and ω � W , the drive could not gen-
erate resonance between localized modes and thus the
heating process is avoided.
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C. Eigensystem Order

In conventional studies of phases and orders, the order
parameters, which serve as diagnosis of ordered phases,
are evaluated in equilibrium Gibbs ensembles. Such idea
need to be generalized for out-of-equilibrium orders. In-
stead of taking thermal averages, order parameters and
correlation functions are calculated on single eigenstates.
In addition, properties of eigenspectrum, e.g. level spac-
ing statistics, can be used to characterize static or dy-
namical nature of system.

II. MODELS AND RESULTS

A. One Dimensional Spin Chain

We start from considering an undriven 1D disordered
spin chain with Ising Symmetry,

H =
∑
i

Jiσ
x
i σ

x
i+! +

∑
i

hiσ
z
i + Jz

∑
i

σzi σ
z
i+1 (3)

Carrying out a Jordan-Wigner transformation, the
Hamiltonian is mapped to a fermionic picture. The first
two terms give a p-wave superconducting free-fermion
model, whereas the final term is converted to density-
density interactions. In the non-interacting clean model
limit, Ji = J , hi = h and Jz = 0, the system holds two
ground states: a paramagnetic (PM) state with spins
aligned with the external field when J < h and a ferro-
magnetic state with the Ising symmetry spontaneously
broken when J > h. At any finite system size, the two
lowest-lying eigenstates for the ferromagnet are Z2 sym-
metric ”Schrodinger cat states”: |0±〉 = 1√

2
[| ↑〉 ± | ↓〉].

The characteristic difference between the two states is
that the latter displays long-range order (LRO), where
the correlator C(i, j) = 〈σzi σzj 〉 − 〈σzi 〉〈σzj 〉 remains finite
upon taking long distance and infinite system size limit.

Introducing disorder to the system changes the pic-
ture described above. When h = Jz = 0 and Ji are
randomly distributed, each eigenstate becomes ”glassy”:
the Ising symmetry is only locally broken and is en-
ergetically degenerate with its Ising reversed partner.
Turning on weak fields, the finite size Z2 eigenstates
are again Schrodinger cat states. This glassy phase is
diagnosed by two point correlation functions evaluated
in each Schrodinger cat eigenstate. Note that the sign
of such correlation functions fluctuates between different
states and the thermal average is cancelled out. Thus
distinct from the aforementioned ferromagnetic phase,
this phase is denoted as spin-glass (SG). Specifically, we
consider log-normally distributed Ji and hi, with mean

¯log(Ji) = ¯log(J), ¯log(hi) = ¯log(h) = 0 and standard de-
viation 1. The work on eigenstate order has shown that,
with disorder and localization, both the PM phase for

¯log J < ¯log h and the SG phase for ¯log J > ¯log h exist at
all energies5. With weak interactions, 0 < Jz � 1, the
strongly localized PM and SG phases remain MBL.

FIG. 1: Phase diagram of the binary driven spin chain in
the non-interacting limit. Figure adapted from ”Phase Struc-
ture of Driven Quantum Systems”, by Khemani, Vedika and
Lazarides, Achilleas and Moessner, Roderich and Sondhi, S.
L., Phys. Rev. Lett., 10.1103/PhysRevLett.116.2504015.

B. Spin Chain with Periodic Binary Drives

Consider a binary drive with alternating mean of log J :

H(t) =
∑
i

fs(t)Jiσ
x
i σ

x
i+1 +

∑
i

hiσ
z
i + Jz

∑
i

σzi σ
z
i+1,

(4)

where fs(t) = 1 when 0 ≤ t < T/4 and 3T/4 < t ≤ T
and fs(t) = e when T/4 ≤ t ≤ 3T/4. We set Jz = 0.1.
According to the previous discussion, Floquet MBL re-
quires small interactions and large driven frequency com-
pared with the disorder scale. Thus the frequency is set
at ω = 2π/T = 2W , where W is the standard deviation
of hi and Ji. In order to examine whether the system
reaches MBL within the parameter space studied, the
level-statistics ratio r = min(δn, δn+1)/max(δn, δn+1) is
calculated for the quasi-energy gaps δn = En+1 − En.
Away from the critical value ¯log(J) = ¯log(h), the disor-
der averaged 〈r〉 approaches the Poisson limit of 0.38 with
increasing size, which indicates that the system is many-
body localized. 〈r〉 is peaked at ¯log(J) = ¯log(h), never-
theless the value at that point remains below the Circu-
lar Orthogonal Ensemble (COE) value of 0.527, showing
partial delocalization.

With localization established, the notion of phases can
be discussed in a similar manner as in equilibrium sys-
tems. Based on the discussion of the on dimensional spin
chain, the dynamical counterpart of PM and SG are ex-
pected in the driven spin chain. In this case, the diagnos-
tic values are evaluated in Floquet eigenstates instead of
Gibbs ensembles. Consider the spin correlators (A = x
or y)

CαAA(ij; t) = 〈φα(t)|σAi σAj |φα(t)〉 (5)

for i− j � 1 and the SG diagnostic χSG defined as

χSGα (t) =
1

L2

L∑
i,j=1

|〈φα(t)|σxi σxj |φα(t)〉|2 (6)



3

in any given Floquet eigenstate. For ¯log(J) < ¯log(h),
the correlators Cxx and Cyy both vanish with increas-
ing system size L and χSG approaches 0, signaling a PM
phase. For ¯log(J) > ¯log(h), both correlators are gener-
ically nonzero with varying signs and χSG is finite for
increasing L, showing typical features of a SG phase.

Note that in Floquet systems, it is sufficient to identi-
fying the PM phase, since the SG phase can be obtained
by duality5. In the localized SG phase, the MB eigen-
states come in almost degenerate spin-flip pairs. They
can be connected by any spin operators that flips the
parity of the eigenstates. Thus the spectral function of
the spin raising operator σ+

i in the Floquet eigenbasis

A(ω) =
1

2L

∑
αβ

〈φα(0)|σ+
i |φβ(0)〉δ(ω − (Eα − Eβ)) (7)

is a delta function peaked at ω = 0 (labeled as the “0”
phase).

Moving beyond generalization of phases already exist
in equilibrium systems, two new Ising phases are iden-
tified: the π-SG phase and the 0π-PM phase. Instead
of energetically degenerate pairs, the MB Floquet eigen-
states come in cat pairs separated by quasi energy π/T ,
where the spectral function A(ω) shows a delta function
peak at ω = π/T . Moreover, the magnitude of Cxx and
Cyy correlators cross twice during a period, meaning the
SG order parameter rotating by an angel π about the
z axis. Hence we have introduced four Floquet phases:
the long range ordered 0-SG and π-SG phases, and their
dualities without long range order, namely the PM and
the 0π phases.

Consider the following binary periodic drive: H(t) =
Hz if 0 ≤ t < T1 and H(t) = Hx if T1 ≤ t < T = T1 +T2,
where

Hz =
∑
i

hiσ
z
i + Jz

∑
i

σzi σ
z
i+1 (8)

Hx =
∑
i

Jiσ
x
i σ

x
i+! + Jz

∑
i

σzi σ
z
i+1 (9)

The phase diagram of the Hamiltonian in the non-
interacting limit (Jz = 0) is plotted in Fig. (1). In order
to examine the novel Floquet π-SG phase in an interact-
ing model, T1 is picked to be 1, T2 is picked to be π/2.
hiT1 is uniformly drawn from the interval (1.512, 1.551)
and JiT2 from (0.393, 1.492). According to Fig. (1), this
choice of parameters falls into the π-SG region. The sta-
bility of MBL against interaction is again examined by
calculating the level statistics ratio 〈r〉 as before. A clear
transition happens at about Jz = 0.1. When the Jz ex-
ceeds 0.1, the MBL state is destroyed.

There are two characteristic features of the π-SG
phase: (i) The spectral functions measured in the pa-
rameter regime of the π-SG phase exhibit clear peak at
ω = π/T , which gradually disappears as Jz goes beyond
the MBL limit. In contrast, the peak of the spectral func-
tions of the 0-SG phase are located at ω = 0. (ii) The
time evolution of the correlators Cxx and Cyy cross each
other twice during one period, meaning the SG order pa-
rameter rotating by an angle π about the z axis.

III. CONCLUSION

To summarize, contrary to naive expectation, numeri-
cal evidence provided above illustrates that Floquet sys-
tems host a rich phase diagram beyond the trivial er-
godic phase. In addition to Floquet counterparts of the
established phases in equilibrium system, there are sev-
eral phases that are entirely new to nonequilibrium sys-
tems. Some of those phases are related to more novel
concepts, e.g. time crystal6. The work opens up a zoo of
new phenomena in Floquet systems awaiting for further
exploration.
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