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Entanglement is a key feature unique to quantum mechanics which ties together quantum infor-
mation theory, condensed matter physics, and high energy physics. The dynamics of entanglement
growth have been of much interest in recent years, being integral to the foundations of quantum
statistical mechanics. In this work we summarize the important results and methods of two papers
by Kim and Huse, and Nahum et al.. Kim and Huse study a nonintegrable quantum system which is
known to thermalize by exact diagonalization a spin 1/2 chain, and find ballistic growth of the von
Neumann entanglement entropy from an initially unentangled state. Nahum et al. instead study
random unitary circuits with minimal structure, finding again generic ballistic entanglement spread-
ing, which they map to a well-known equation governing stochastic dynamics in classical mechanics.
Notably, they find that the speed of entanglement (thermalization) is in fact slower than the speed
at which a single initially localized operator spreads.
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I. INTRODUCTION

Entanglement is a unique feature of quantum mechan-
ics, with no analogue in classical physics. Initially poorly
understood1, these quantum correlations that develop
between different parts of a composite quantum system
are fundamental to the underlying quantum evolution,
and are crucial to the majority of the distinctive prop-
erties of quantum mechanics. Entanglement is a critical
concept in many different fields of physics — in quantum
optics, entanglement between a system (i.e. an atom and
the electromagnetic field) leads to decoherence, crucial to
the understanding of spontaneous emission. In quantum
information theory, it is entanglement which is the key
ingredient in quantum computing which allows for expo-
nential advantage in computing speed over classical com-
puting for certain algorithms. In high energy physics the
entanglement entropy is important to the study of the
black hole information paradox, and in condensed mat-
ter physics, entanglement plays a key role in the process
of thermalization, which bridges a closed-system quan-
tum mechanical approach to thermal equilibrium with
the classical one utilizing thermodynamic ensembles. In
both quantum and classical mechanics, a fully isolated
system will evolve fully deterministically. However, for
many systems, in the thermodynamic limit (large system
size, long time elapsed since initial condition), the system
is assumed to evolve into a thermal state at a certain
temperature in which its observables can be calculated
probabilistically from a thermodynamic ensemble, with
no memory of the initial conditions of the system. In
classical mechanics, this apparent discrepancy can be re-
solved with chaos theory, assuming the system to have
after a large enough time explored its phase space ergod-

ically such that initial condition of the system becomes
irrelevant. In the language of quantum mechanics, the
information encoded in the initial state is remembered
by the system at long times, but becomes spread out in a
nonlocal fashion as entanglement is generated across the
many degrees of freedom of the system. Thus the initial
state determines the properties of the thermalized state
(temperature), but memory of the initial observables is
hidden as it can no longer be accessed by physical lo-
cal measurements. In classical mechanics, it is typically
nonlinear evolution that leads to chaos, while in quan-
tum mechanics the equations of motion are linear, and
the properties leading to thermalization are encoded in
the eigenstates of the Hamiltonian.

One interesting question in condensed matter physics
is how the entanglement in a system is dynamically gener-
ated under interactions. If a system of composite subsys-
tems (i.e., a 1D array of spins) is initialized in a separa-
ble product state and allowed to undergo general unitary
evolution in the presence of interactions, it will generally
evolve from a state with zero entanglement to an entan-
gled state. A natural question to ask then is what is the
rate at which this entanglement will grow. Furthermore,
how can one classify systems based on the characteristics
of their entanglement growth?

In this paper, we discuss the results of two papers
which interrogate and partially answer these questions,
Ballistic Spreading of Entanglement in a Diffusive Non-
integrable System2, and Quantum Entanglement Growth
under Random Unitary Dynamics3, published in Physi-
cal Review Letters, and Physical Review X, respectively.
Both of these papers discuss entanglement growth in a 1D
chain of quantum subsystems, starting from an initially
unentangled state. The former studies this chain using
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full diagonalization of a nonintegrable quantum Hamil-
tonian giving interactions between the spins, and finds
a ballistic (linear in time) growth of entanglement when
averaged over random initial conditions. The latter in-
stead uses a discrete quantum circuit model, in which
time is discretized and random unitary evolutions are
applied to neighbouring “spins” at each time step. In
this work, the authors again find ballistic entanglement
growth, and map this evolution to a stochastic differen-
tial equation used in three different models in classical
mechanics, giving a wide variety of perspectives to view
the features of entanglement growth. We begin by a dis-
cussion of relevant background information and previous
findings, and then give a summary of the most important
results of both papers.

II. BACKGROUND INFORMATION

Quantum entanglement is a unique quantity in that
unlike other conserved quantities which can be trans-
ported such as energy and charge, entropy grows and
spreads upon interactions with other subsystems in a
manner often likened to an epidemic, where information
becomes delocalized over a larger volume. Often, entan-
glement is quantified via the entanglement entropy, or
generically, the nth Rényi entropy Sn. For a pure state
of an isolated quantum system, the entanglement entropy
is zero, but by dividing the system into subsystems (trac-
ing out all but the subsystem of interest), a measure of
entanglement of the region considered with the rest of
the system can be obtained. Consider a chain of “spin”
in a 1D lattice, each with subspace of dimension q. By
making a “cut” in the lattice at bond location x and trac-
ing out every spin to the left of the cut, dividing it into
two regions, one can calculate

Sn(x) =
1

1− n
logq(Trρnx), (1)

where ρx is the reduced density operator for everything
right of the cut at x. The most theoretically important
Renyi entropy is limn→1 Sn(x) = S(x), where S(x) is the
von Neumann entropy:

S(x) = −Tr(ρxlogqρx). (2)

In lattice systems, the existence of an upper bound on the
propagation of entanglement (generically much less than
the speed of light in a vacuum) is rigorously proven, and
is known as the Lieb-Robinson velocity4. However, this
result is highly general and it is desirable to have more
information on how this information actually propagates
in specific systems.

As discussed in the introduction, quantum systems
which thermalize do so on the basis of their eigenstates
of the system Hamiltonian5, and these will typically sat-
urate to a state which has entanglement entropy scaling
extensively with the volume of the system. However,

there also exist systems which do not thermalize on the
basis of disorder, instead forming many-body localized
states which retain a memory of their initial conditions in
local observables and have entanglement entropies that
scale with the area of the system in the steady state.
These states are known to exhibit logarithmic growth of
entanglement entropy over time6,7.

In quantum systems which do thermalize, integrable
systems, with extensively many conserved constants of
motion, were known prior to the publication of Ref.2 to
have ballistic entropy growth8. In these systems, this
growth of entropy can be understood from a picture of
quasiparticles in the system which propagate ballistically.
The work of Ref.2 of Kim and Huse deals with the growth
of entanglement in a non-integrable system.

III. BALLISTIC SPREADING OF
ENTANGLEMENT IN A DIFFUSIVE

NONINTEGRABLE SYSTEM

In this section we summarize the main results and
methods of Ref.2. In this work, Kim and Huse study
a nonintegrable spin chain model in 1D which thermal-
izes. This model has diffusive energy transfer, which
means that the energy transport occurs proportional to
t1/2. The system consists of a chain of L interacting spin
1/2 particles with transverse and longitudinal fields. The
Hamiltonian used to model this system is

H = g

L∑
i=1

σxi +h

L∑
i=1

σzi −J(σz1 +σzL)+J

L−1∑
i=1

σzi σ
z
i+1. (3)

The first two terms of Eq. (3) correspond to the trans-
verse and longitudinal fields, respectively. The fourth
term is the interaction with open boundary conditions
(which are beneficial as periodic boundary conditions re-
duce the effective chain length, which is already limited
due to numerical considerations), and the third is a cor-
rection term to reduce the effective longitudinal field at
the spin chain boundaries, which is done to reduce fi-
nite size effects associated with the boundary conditions.
The authors choose parameters J = 1, h = (

√
5 + 1)/4,

and g = (
√

5 + 5)/8, which are chosen to make the sys-
tem’s non-integrability apparent even with finite lattice
sizes. The system has only one symmetry (mirroring
spins along center point), and the Hamiltonian is diag-
onalized numerically in each of these parity sectors sep-
arately. One way in which the authors can verify that
this system is nonintegrable and does not have additional
symmetries is by looking at the distribution of the ratio
of successive differences in energy eigenvalues9. Specifi-
cally, if λ1, λ2, ... are the eigenvalues of the Hamiltonian
in order from smallest to largest, then one can plot a his-
togram of the ratios ri = (λi+2−λi+1)/(λi+1−λi). For an
integrable system, one expects this distribution to follow
Poisson statistics, whereas for a non-integrable system
with no particular symmetries, the probability distribu-
tion displays level repulsion, and can be predicted from
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random matrix theory. This approach allows the authors
to verify their model is nonintegrable, contains no ad-
ditional symmetries, and (with the aid of looking at the
general energy distribution), that the model is sufficiently
generic such that the eigenspectrum contains no partic-
ular features. This helps the authors conjecture that the
results of this model are generalizable to other noninte-
grable systems.

The authors consider an entanglement cut in the mid-
dle of the spin chain, and parameterize their initial prod-
uct states as

ψ(t = 0) =

L∏
i=1

(
cos

(
θi
2

)
↑i + eiφ sin

(
θi
2

)
↓i
)
, (4)

where 0 ≤ θi < π, and 0 ≤ φi < 2π are random vari-
ables. Eq. (4) allows the authors to consider the full
space of initial product states. The entanglement en-
tropy used is the von Neumann entropy (Eq. (2)). The
authors calculate this entanglement entropy by evolv-
ing an initial state to time t for 200 different initial
{θi, φi} conditions, done separately for each value of t
to ensure statistical independence. Ballistic entangle-
ment growth is seen for short timescales until saturation
is reached, where the entanglement levels out at a steady
state value. Analysis reveals a finite-size scaling form of
S(t) = SL(∞)F (t/SL(∞)), where the function F (x) has
asymptotic forms F (x) ∼ vEx as x → 0, and F (x) ∼ 1
as x → ∞, where vE ≈ 0.7. Analytic calculations show
that the steady state value of entanglement for this model
should be L/2, or the full length of the chain after the
entanglement cut has been made. This allows one to in-
terpret vE not just as a rate of entanglement growth, but
a “speed” of entanglement.

To verify that the model used in Eq. (3) indeed involves
diffusive energy transfer, the authors define a “distance”
function R(t) which gives the spatial spreading of an en-
ergy excitation initially localized at the center bond of the
chain away from the center over time. The authors con-
firm that the spreading of this energy is diffusive (i.e., it
has
√
t time dependence before saturation, and neglecting

very short times t << 1). The authors conjecture that
all local observables for this model (and non-integrable
systems in general) should have diffusive behaviour, al-
though they are not able to provide evidence for this.

IV. QUANTUM ENTANGLEMENT GROWTH
UNDER RANDOM UNITARY DYNAMICS

In this section we summarize the main results and
methods of Ref.3. Whereas Kim and Huse studied quan-
tum dynamics using a Hamiltonian and exact diago-
nalization with random initial conditions, Nahum et al.
study the dynamics of entanglement by discretizing time
evolution and studying the evolution of quantum systems
under random unitary evolution. The advantage of this
approach is that by evolving systems under this “min-
imally structured” model, the results will presumably

be more generic and widely applicable. This work finds
again ballistic spreading of entanglement, and maps this
growth to the well known Kardar-Parisi-Zhang (KPZ)
equation. The KPZ equation has three important ap-
plications in classical physics, and each of these can
be related to entanglement growth under random uni-
tary evolution. This equation can also be used to de-
duce critical exponents governing fluctuations in the en-
tanglement growth and correlations, which gives addi-
tional insight into entanglement behaviour beyond bal-
listic growth. Another major finding of this work is that
the “speed” of entanglement is generically conjectured
to be slower in general than the “operator spreading” of
initially localized operators in the Heisenberg picture, in
contrast to previously held beliefs.

FIG. 1. Model of 1D circuit of L spins, where a random uni-
tary gate couples two randomly selected neighbouring spins
at each discrete time step (i.e. from t0 to t0 + 1), which cor-
responds to the dynamical rule of Eq. (5) in the q →∞ limit.

A. Simple 1D Circuit Model

Nahum et al. study random unitary circuits in which
neighbouring “spins” are able to interact via a random
unitary operator in discrete time steps, as shown in Fig 1.
Here a simple model is considered where one takes the
n = 0 Rényi entropy S0, which simply depends on the
number of nonzero eigenvalues of the reduced density op-
erator. This entropy on its own is not always interesting,
as it does not quantify how arbitrarily small those eigen-
values may be, but it is shown that in the q →∞ limit,
all Rényi entropies become equal to S0. In this limit, the
entropies (denoting them as S0, generically) follow the
very dynamical rule for timesteps from t to t+ 1:

S0(x, t+ 1) = min{S0(x− 1, t), S0(x+ 1, t)}+ 1, (5)

where, for each time step, a random bond x is chosen
and the dynamical rule is applied while enforcing the
boundary condition S0(x = 1) = S0(x = L) = 0. Note
that here x labels the L bonds of the lattice, in contrast
to Ref.2. This rule corresponds to a stochastic surface
growth model, which saturates to a pyramid-like shape.
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The connection to stochastic surface growth suggests a
comparison to the KPZ equation, originally introduced
to study stochastic surface growth,

∂S

∂x
= ν∂2xS −

λ

2
(∂xS)2 + η(x, t) + c, (6)

where S denotes the height of a surface at position x, and
η(x, t) is noise uncorrelated in space and time. The KPZ
equation is characterized by critical exponents β = 1

3 ,

governing the size of fluctuations, and α = 1
2 , govern-

ing spatial correlations. Specifically, for times prior to
saturation, the mean height h(t) grows ballistically with
speed vE with a subleading correction:

〈S(x, t)〉 = h(t) = vEt+Btβ , (7)

where B is a constant. The standard deviation of the
entropy w(x, t) satisfies

w(x, t) = Ctβ , (8)

where C is a constant, and the spatial correlation length
ξ follows

ξ(t) ∝ tβ/α. (9)

Nahum et al. state that their simulations reveal growth
dynamics of the entanglement entropy consistent with
the KPZ equation (i.e., it satisfies Eq.’s (7)- (9)), where S
denotes the entanglement entropy evolving under Eq. (5).

B. Directed Polymer and Minimal Cuts

A second perspective to view entanglement entropy dy-
namics by is to consider the “minimal cut”. By fixing
the top position x, any cut which starts at the bottom
of the circuit (t = 0, at any location) and ends at x
gives a lower bound on the entanglement entropy S0(x, t)
by counting the number of legs the cut passes through.
Thus, the best estimate for the entanglement entropy
is the cut which passes through the minimal number of
legs. It can be shown that all Rényi entropies satisfy
S(x) < Scut, where Scut is the number of legs that the
curve of the cut passes through. As a consequence of this,
the “best” (lowest) bound for the entanglement entropy
is given by the minimal cut which passes through the
smallest amount of legs of the circuit. In a random cir-
cuit like the ones described in this work, the “geometry”
of the circuit will be random, which leads one to draw
analogy to the problem of finding an energy minimizing
shape in a disordered medium. This “directed polymer”
problem can be mapped to the KPZ equation by moving
to a continuum description of the relevant coordinates,
and thus shares the same critical exponents and universal
properties. The authors also show that the scaling forms
describing this model are equivalent to those in the work
by Kim and Huse2, described in Section III.

The minimal cut picture is only a lower bound for the
von Neumann entropy (except in the q →∞ limit, where
it gives it exactly), however the authors conjecture that
the properties of entanglement entropies that can be cal-
culated with this approach share universal features with
the actual dynamics. One major advantage of the mini-
mal cut picture is that unlike the other pictures presented
in this work, the minimal cut picture can be generalized
to higher dimensions. In this manner, the 1D polymer
is replaced with a d dimensional membrane embedded in
d + 1 spacetime, which is pinned by disorder, and the
“minimal membrane” gives an estimate of the entangle-
ment entropy.

C. Operator Spreading and Hydrodynamics

The last of the three models that follow KPZ dynamics
that can be related to entanglement growth in random
unitary circuits relates to operator growth and hydrody-
namics. An operator Oi(t) that acts locally on a specific
spin i at t = 0 will in general grow ballistically – i.e., the
number of spins it acts on over time in the Heisenberg
picture will grow linearly with a certain speed vB . One of
the main results of the work by Nahum at al. is the show
that this speed vB is in general larger than the speed
at which entanglement actually grows. The entangle-
ment growth speed is instead a function of the collective
behaviour of operator spreading, which can be mapped
again to KPZ dynamics by an analogy to stochastic hy-
drodynamics. To study the growth of these operators,
the authors study Clifford circuits, which give rise to a
restricted set of possible unitary evolutions. Specifically,
Clifford circuits consist of unitary gates which take (ten-
sor products of) Pauli matrices to other Pauli matrices
under the transformation Oi → U(t)OiU†(t). Clifford
circuits do not study quantum evolution in full general-
ity, but have the advantage of being classically simulable
in polynomial time, in contrast to general quantum evo-
lution.

The language of operator spreading and entanglement
growth is best described using the “stabilizer” formalism.
Restricting themselves to Clifford evolution, the authors
allow the initial state of L qubits (q = 2) in a 1D chain
to be a product state of spins aligned in the X, Y , or
Z directions, such that the initial state ψ(0) can be de-
scribed with L Pauli operators {Oi} for which ψ(0) is an
eigenstate with eigenvalue 1:

Oiψ(0) = ψ(0). (10)

In connection to group theory, they denote these L op-
erators the stabilizers of ψ(0). Note that the Pauli ma-
trices X, Y , Z, are not all independent; for example,
Y = −iXZ. Furthermore, the overall sign of the stabi-
lizers is not relevant and does not need to be kept track
of as it is not involved in the unitary evolution and does
not play a role in the entanglement properties. Thus, any
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stabilizer can be represented as a string

Oi(t) = X
x1,i

1 Z
z1,i
1 ...X

xL,i

L Z
zL,i

L , (11)

where the L × L matrices xi,j , zi,j have binary en-
tries which fully determine the state ψ(t). For Clif-
ford circuits, the unitary gates (evolutions that couple
two qubits) can be selected from the generating set of
Hadamard, phase, and CNOT gates, for which the en-
tries of xi,j and zi,j can be updated efficiently. Further-
more, the entanglement entropy (for Clifford circuits, all
Rényi entropies are equivalent) can be calculated from
these matrices.

FIG. 2. Schematic of the operator spreading picture, where
white circles represent left endpoints of a stabilizer and blue
circles denote right endpoints, for L spins. In general, the
right “particles” will drive towards the right over time, and
the white particles will drift toward the left. An initially
unentangled state corresponds to equal densities of white and
blue particles.

The stabilizer formalism allows for qualitative insight
into how entanglement growth can be related to the
spreading of operators. A stabilizer at t = 0 for a state
initially unentangled will be completely localized at a
spin at location i on the 1D lattice. As time increases,
as previously mentioned, the rate at which the stabilizer
increases its length (by acting on more spins) is ballistic
and can be ascribed “butterfly speed” (in relation to the
butterfly effect of chaos theory) vB . One can create a pic-
ture of how this functions by labelling the left and right
endpoints of the ith stabilizer by li and ri, respectively.
By analogy, these left and right endpoints can be seen as
two types of fictitious particle, represented by white and
blue circles as in Fig 2. Noting that the L stabilizers are
not necessarily unique descriptions of the state at a given
time (for example, two stabilizers can be multiplied to get
another stabilizer), the authors use a “clipped gauge” in
which they enforce the criterion that the total amount of
l and r particles at a location i must be equal to 2. En-
forcing this requirement during unitary evolution ensures
that the stabilizers remain independent. In this represen-
tation, it is easy to calculate the entanglement entropy
based on the distribution of these particles. Specifically,
the entanglement entropy S(x) at a cut x is equal to the
number of r particles right of the cut minus the number of
sites right of the cut. The dynamics in this model can be
understood then as r particles spreading to the right over
time with the restriction that more than two r particles
can not exist at a certain location at a time, described
as a “traffic jam” phenomenon. From this framework,

the authors can explicitly derive the KPZ equation for
Clifford circuits.

The “clipping” that is done to enforce the criterion
described above ensures that the stabilizers remain inde-
pendent, but it also effectively slows their growth. This
is a key hint to understanding why, in general, the en-
tanglement speed vE is smaller than the butterfly speed
vB . The latter describe the growth speed of an opera-
tor considered in isolation, but by enforcing an indepen-
dence requirement on the operators which describe the
quantum state as a whole, it can be seen that the collec-
tive speed of operator growth, which corresponds to the
speed of entanglement, is slower. The authors summarize
this principle with the statement that “thermalization is
slower than operator spreading”.

D. Numerical Evidence of KPZ Behaviour

Finally, the authors provide numerical evidence for
Clifford circuits (and more generic quantum circuits) that
the behaviour of random unitary evolution does in fact
give rise to KPZ behaviour, and we summarize some of
this here. For Clifford circuits, they randomly select for
each bond in the circuit at each time step from either the
identity gate, a left-CNOT gate, or a right-CNOT gate.
Starting from initial conditions of all spins polarized in y-
direction, they calculate the von Neumann entropy S(x),
showing again the pyramidal shape that the model in
Section IV A results in.

Next, the critical exponents of the KPZ equation can
be verified by averaging over many different iterations
and plotting h(t) and w(t), as defined in Eq.’s (7) and (8).
From numerical fits, the authors find exponents of β =
0.33 ± 0.01 for the fit of h(t), and β = 0.32 ± 0.02 for
the plot of w(t), including a subleading correction, in
excellent agreement with the KPZ values. They also find
by considering spatial correlations that the KPZ value
of α = 1/2 is well replicated for short times prior to
saturation.

By comparing the entanglement growth speed as de-
fined by Eq. (7) with the butterfly speed given by the
growth of a single Pauli string, the authors find vE =
vB/2, which agrees with exact calculations in the analyt-
ically solvable q →∞ model.

Going beyond Clifford circuits, the authors also do
simulations with “phase evolution” and “universal evolu-
tion” using matrix product states. Phase evolution cor-
responds to applying, in addition to the random two-
qubit gates used in the Clifford circuits, one-qubit gates
that apply a random phase rotation about the z axis to
each qubit, while universal evolution includes this plus
a Hadamard gate (which allows the full space of uni-
tary evolution to be sampled). These calculations are
much more computationally intensive, and as such the
limited simulation times that can be accessed means the
authors can not extract from curve fitting critical expo-
nents; however, they do plot curve fits using the KPZ
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exponents as fixed parameters which do agree with the
data. This, coupled with the heuristic pictures and ar-
guments given in the rest of the paper, lead the authors
to conjecture that the KPZ behaviour is universal for
generic (random) unitary evolution of quantum systems.

V. CONCLUSIONS

In conclusion, the papers we have discussed have pro-
vided much evidence that in general, nonintegrable quan-
tum systems in 1D have entanglement entropy which
grows ballistically in time from an initially unentangled
state. Kim and Huse (Ref.2) showed this by taking a
specific nonintegrable model of a spin 1/2 chain in 1D
which has diffusive energy transfer, and exactly diago-
nalizing the Hamiltonian, conjecturing that this ballistic
entanglement growth would apply to any generic nonin-
tegrable model with diffusive local observables. Nahum
et al. (Ref.3), in contrast, considered random unitary cir-
cuits, which have minimal structure and thus likely pro-
vide a better estimate of how generic quantum systems
will behave. Nahum et al. provided evidence that ran-
dom unitary circuits will exhibit behaviour in the KPZ

universality class, by relating three problems in classi-
cal physics governed by the KPZ equation to entangle-
ment growth, and showing how this can be generalized
to higher dimensions using a “minimal membrane” pic-
ture, generalizing the directed polymer model in a dis-
ordered medium. They also found, notably, that the
rate of entanglement growth is in fact a speed, and that
this speed is generically slower than the speed of oper-
ator spreading; “thermalization is slower than operator
spreading”. They provided an explanation of this find-
ing by using Clifford circuits as an example, where re-
quiring the growth of stabilizers into a certain region
(directly correlated with entanglement) is slowed rela-
tive to generic operator spreading due to the “clipping”
requirement of stabilizers to keep them independent of
each other. To give an example of an interesting find-
ing in this topic after the publication of these papers, in
2019, Rakovszky et al.10 found using both spin chain di-
agonalization and random unitary circuits that for nonin-
tegrable systems with a conserved quantity (e.g., energy)
that spreads diffusively, the Rényi entropies for n ≥ 2
grow diffusively. This is interesting as they point out for
large subsystems that only these entropies are currently
experimentally accessible.
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