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Computational simulation have their limitations when simulation many-body systems. A physics
controllable, coherent many-body systems can provide insights into the quantum many-body dynam-
ics that elude modern computing. The Rydberg, cold-atom array system experimentally realized
by Bernien et al. in their 2017 paper, ”Probing many-body dynamics on a 51-atom quantum sim-
ulator” is discussed as one such possible many-body quantum simulators. This Rydberg quantum
simulator.
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I. INTRODUCTION

Computational approaches serve as the natural domain
for many-body quantum experiments in the absence of a
fully controlled, coherent many-body quantum system. A
classical system such as a computer, however, has its limi-
tations in its applicability and functionality when applied
to a quantum system. The goal is therefore to develop
a quantum simulator which can provide the same kind
of insights into strongly correlated quantum systems for
which we currently rely on computers. Such a quantum
simulator would allow a better understand of the role of
quantum entanglement in the system and allow enable
realizations and studies of new states of matter. Bernien
et al. in their 2017 paper, ”Probing many-body dynamics
on a 51-atom quantum simulator”, suggest an experimen-
tal method for creating a deterministically prepared and
reconfigurable many-body quantum arrays of individu-
ally trapped cold atoms1. This review is an overview
of their methods and results. All figures and data are
qualitatively adapted from those in the original article.

II. BACKGROUND

A. Building a Chain of Strongly Interacting Atoms

Bernien et al.’s realization of a quantum simulator in-
volves the coherent coupling of neutral atoms to excited
Rydberg states. A Rydberg state occurs when an elec-
tron is excited to in a very high, diffuse orbital which
interacts only weakly with other electrons in the atom2.
This separation creates a strong dipole resulting in repul-
sive van der Waals interactions (of strength Vij = C/Rij)
between Rydberg atom pairs (separated by distance Rij).
Fig. 1a describes how the cold neutral Rubidium atoms
are arranged as an array in the simulator. Individual Ru-
bidium atoms (green) are trapped using optical tweezers

(vertical red beams) and arranged into 1-D chains. The
lateral black arrows represent the coherent van der Waals
interactions Vij between excited atoms. Atoms are ex-
cited by the horizontal red and blue beams to a Rydberg
state with strength Ω and detuning ∆. The quantum
dynamics of this constructed system are governed by the
system Hamiltonian
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where ∆i are the detunings of the driving lasers from
the Rydberg state, σi

x = |gi〉 〈ri|+ |ri〉 〈gi| is the coupling
between the ground state |gi〉 and the Rydberg state
|ri〉 of an atom at position i in the chain driven at a
Rabi frequency Ωi, ni = |ri〉 〈ri|, and ~ is the reduced
Planck constant. Here, homogenous coherent coupling
is used (|Ωi| = Ω, |∆i| = ∆), which is controlled by
changing lasers intensities and detunings in time. The
interaction strength Vij is tuned either by varying the
distance between atoms or by coupling atoms to different
Rydberg states.

Fig. 1b shows the two-photon process which couples
the ground state |g〉 to the Rydberg state |r〉. The two
laser frequencies can be controlled to select the desired
detuning ∆. By the experimental protocol, atoms are
loaded from a laser-cooled cloud of Rubidium-87 atoms
in a magneto-optical trap (MOT) into the array of
tweezers3. Tweezers are filled probabilistically with
an average single-atom loading probability of p ≈ 0.6.
Occupied and empty tweezers are distinguished using
fluorescence imaging. Unoccupied traps are switched off
and the remaining occupied tweezers are moved to the
left until they stack up with a desired spacing. This
process eliminates entropy associated with the proba-
bilistic loading in a similar idea to “Maxwell’s demon”4.
The single-atom occupation probability in the left-most
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FIG. 1: Experimental Platform. a, Rubidium atoms (green) are trapped using optical tweezers (vertical red beams) and
arranged in to defect-free array. Rydberg states are coupled with strength Ω and detuning ∆ (inset). b, A two-photon process
coupling the ground state |g〉 to the excited Rydberg state |r〉. Driving lasers at frequencies Ω are detuned to get are an overall
detuning of ∆. Figure and data adapted from Bernien et al.1 (Source: J. Georgaras, after Bernien et al. [1])

traps increases from ≈ 0.6 before rearrangement to
0.988(3) after rearrangement, demonstrating the ability
for high-fidelity single-atom preparation.

These occupying atoms are prepared in a well-defined
internal ground state |g〉. The traps are turned off
and the system evolves under unitary time evolution
U(Ω,∆, t) by the use of laser light coupling. This evo-
lution can be implemented in parallel on several non-
interacting subsystems. The traps are then turned back
on and the ground state atoms remain and the excited
atoms are ejected from the trap. Fluorescence imaging
distinguishes occupying ground state atoms and the now
unoccupied “holes” left by the excited states. This is
known as the “Rydberg blockade”. Multiple Rydberg ex-
citations are suppressed when two atoms are close enough
such that their Rydberg induced van der Waals interac-
tions Vij exceed the Rabi frequency Ω. The Rydberg
blockade radius Rb is the separation of atoms such that
Vij = Ω. As multiple atoms are brought close to each
other, the dynamics change as one excitation is effectively
shared between atoms in clusters of size N. Rabi oscil-
lations between the ground state and a collective state
with exactly one excitation (W = 1/

√
(N). . . ) have a

frequency which scales as
√

(N). These observations en-
able the coherence properties of the system to be quan-
tified.

B. Encoding the Quantum Simulator

Once prepared, the quantum system created by
the array of Rydberg atoms begins to resemble the
paradigmatic Ising chain of spin-1/2 particles. The
system Hamiltonian equation (1) can be compared to
that of the paradigmatic Ising model in an external
magnetic field for effective spin-1/2 particles with

FIG. 2: Phase diagram and build-up of crystalline
phase. A qualitative schematic of the ground-state phase di-
agram of the Hamiltonian in equation (1). Different possible
broken symmetry phases are shown. These different phases
are dependent on interaction range Rb/a (Rb, blockade radius;
a, trap spacing) and detuning ∆ (see main text). Figure and
data adapted from Bernien et al.1 (Source: J. Georgaras, after
Bernien et al. [1])

the Rydberg and the ground states being equivalent
to the spin-up and spin-down states. Additionally,
the magnetic interaction between atoms in the Ising
model is simulated by the Rydberg interactions. As
such, this system provides a powerful foundation for
exploring a rich variety of many-body physics as a



3

quantum simulator. One theoretical avenue to probing
is that of its ground state. The lowest ground energy
state of the quantum simulator displays many phases,
each with various broken symmetries depending on the
interaction range Rb/a (Rb, blockade radius; a, trap
spacing) and preparation detuning ∆. The shaded areas
illustrated in Fig. 2 indicate incommensurate regions
each representing a different phase.

At large negative ratio of ∆/Ω, the ground state
corresponds to the disordered, paramagnetic phase
where all atoms are in the state |g〉. However, as
∆/Ω increases to large positive values, the number
of Rydberg atoms |r〉 increases (conceptualized in the
Hamiltonian as the number operator coefficient ∆
now outweighing the coupling coefficient Ω) and the
interaction between excited atoms is no longer negligi-
ble. These interactions generate the spatially ordered
phases, called “Rydberg crystals” with the different
spatial symmetries, illustrated in Fig. 2. These phases
correspond to the relative strength of the Rydberg
interactions to the detuning-Rabi ratio (recall Rydberg
interaction strength dependent on atom spacing). If
Vi,i+1 � ∆ � Ω � Vi,i+2, that is, the nearest-neighbor
interaction outweighs the detuning-Rabi ratio but
next-nearest neighbor interaction does not, then we get
the a clustering (seen before with the Rydberg blockade)
of size two. In this case, the ground state breaks Z2

translational symmetry (the ”alternating pattern” phase
shown in Fig. 2) similar to the antiferromagnetic order
in the Ising chain. The interaction strength Vij can
be further extended to further neighbors, thus creating
larger cluster blockades, and a higher degree broken
translational symmetries is obtained along the chain.

The performance of this quantum simulator can be
benchmarked by comparing the measurement of the
Z2 phase order with the theoretical predictions in an
N = 7 atom system. Fig. 3a illustrates the experi-
mental procedure graphically. A driving laser shoots a
square-shaped pulse Ω(t) (blue) while slowly changing
detuning ∆(t) (red) from negative to positive values.
Fig. 3b shows how the system excitation probabilities
evolves over time while the driving laser is on. The data
points are obtained by varying the stopping time tstop
of the laser excitation pulse and state of the system is
read. The Z2 order phase eventual become the most
probable, as illustrated in Fig. 3c. When corrected
for known detection infidelity, the desired many-body
state is reported to be reached experimentally with a
probability P = 77(6)%.

The preparation fidelity of the quantum simulator is
found to be dependent on array size. The probability
of observing the system in the many-body ground state
at the end of the sweep was found to decrease was the
system size decreases. As per the name of the paper,
systems even as large as 51 atoms were found to pro-

FIG. 3: Comparison with a fully coherent simulation.
a, Frequency of the driving laser over time. A square-shaped
pulse Ω(t) (blue) is sent with detuning from negative ∆(t)
(red) to positive. b, Rydberg excitation probability for atoms
in a 7-atom cluster (colored points), measured at various stop-
ping times of the laser pulse Ω(t). Experimentally performed
by Bernien et al.1. c, Evolution of the seven most probable
many-body states. Target reached with probability 77(6)%
when corrected for finite detection fidelity. Figure and data
adapted from Bernien et al.1 (Source: J. Georgaras, after
Bernien et al. [1])

duce a perfectly ordered crystalline many-body ground
state with a probability of P = 0.9(2)% when corrected
for detection fidelity). This result is especially remark-
able because the Hilbert space grows exponentially with
atoms. A system with 51 atoms has a Hilbert space of
dimension 251 and it was found that a state with per-
fect Z2 order is the commonly observed many-body state
given the appropriate spacing over 18,349 experimental
realizations1.

C. Observing Many-Body Quantum Dynamics
Across a Phase transition

Now, with a 51-atom quantum simulator in hand, the
many-body dynamics can be studied across the phase
transition into the Z2 region. A slow sweep of the laser
detuning across resonance, as described previously, is
illustrated in Fig. 4. Long, ordered chains are ob-
served with atomic states that alternate between the Ry-



4

FIG. 4: Quantifying Z2 order in a 51-atom array after a slow detuning sweep. a, Schematic representation of a slow
detuning sweep realization. Domain walls shown as blue circles. b, The mean domain-wall density (blue) decreases along the
detuning sweep and indicates the onset of phase transition. Variance in domain-wall density (red) peaks at transition point. c,
domain-wall distribution measured by Bernien et al. over 18,439 experimental realizations (blue). Green points indicates the
finite detection fidelity correction: average of 5.4 domain walls. This is compared with the distribution that would come from
a thermal state with the same mean domain-wall density. Figure and data adapted from Bernien et al.1 (Source: J. Georgaras,
after Bernien et al. [1])

dberg and ground states. This pattern, however, does
not continue along the entire 51-atom chain. Many or-
dered domains are seen in the single-shot fluorescence
images of Fig. 4a. These domains are separated by
domain walls that consist of two neighboring atoms in
the same electronic state (either Rydberg-Rydberg, or
ground-ground). The number of domain walls in the
51-atom system can be considered as a quantification of
the transition from the disordered phase to the ordered
Z2 phase as a function of detuning ∆. The number of
ordered domains increases as the system enters the Z2

phase and so the number of domain-walls decreases (Fig.
4b). While the mean number of domain-walls decrease
over each of the experimental realizations, the decrease
is not consistent and so the variance of domain-wall den-
sity peaks at the transition point. A variance peak at the
transition point is in agreement with expectations for an
Ising-type second-order quantum phase transition5. The
measured position of this peak is ∆ ≈ 0.5Ω. In the large
detuning limit, ∆ � Ω, and the Ω term in the Hamito-
nian equation (1) can be neglected. An effectively classi-
cal Hamiltonian emerges

Hcl

~
= −∆

N∑
i=1

ni +

N−1∑
i=1

V1nini+1 +

N−2∑
i=1

V2nini+2 (2)

The eigenstates of this Hamiltonian are the 2N

classical configurations of each atom either in |g〉 or
|r〉. Only the next-nearest neighbor interactions are
considered because the coupling strengths for longer
distances are weak compared to the maximum timescale
accessible by the experiment. Deep in the Z2 phase, this
classical regime enables the direct inference of excitation
statistics from the measured domain-wall number. The
number of domain walls in this regime as measured are
depicted in Fig. 4c to have an average of 9.01(2). Cor-
rections for detection fidelity using maximum-likelihood
estimation1 gives a distribution corresponding to a state
that has on average 5.4 domain walls. A perfect Z2

ordered phase, however, should have no domain walls
as no two neighboring atoms would share electronic
states. Bernien et al. assume that the appearance of
domain-walls here come from non-adiabatic transitions
from the ground state at the phase transition1.

The Z2-ordered phase that is created can be further
characterized by a correlation function between positions

g
(2)
ij = 〈ninj〉 − 〈ni〉〈nj〉 (3)

where 〈. . . 〉 is the average over experimental repeti-
tions. The position correlations are found to decay expo-
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FIG. 5: Emergent oscillations in many-body dynamics after sudden quench. a, Domain-wall density as a function of
time after the quench. Oscillations decay at a timescale of 0.88µs. b, Model of non-interacting dimers made of a ground state
atom (blue) and Rydberg atom (white). Figure and data adapted from Bernien et al.1 (Source: J. Georgaras, after Bernien et
al. [1])

nentially over distance with a decay length of ξ = 3.03(6)
sites (further discussed in the next section).

D. Quenching Dynamics of an Ordered Phase

Beyond exploring phase transitions, the quantum sim-
ulator also enables the study of many-body dynamics
far from equilibrium. Bernien et al. focus on the
quench dynamics of a Rydberg crystal initially prepared
in the effectively classical, deep Z2-ordered phase. The
“quench” procedure consists of adiabatically preparing a
Z2-ordered system (i.e. large detuning ∆/Ω as explained
above) and then changing the detuning ∆(t) suddenly to
the single-atom resonance (∆ = 0). After the quench,
oscillations between the initial crystal and it’s compli-
mentary crystal (i.e. every atomic state in each position
is inverted, |r〉 → |g〉 and |g〉 → |r〉) are observed. These
oscillations are observed to be robust and persist over
several periods with a frequency independent of system
size. These oscillations are measured by the domain-wall
density function over time (Fig. 5a). The domain-wall
density oscillation is at a minimum when the system is in
a Z2-ordered state, and a maximum when the state has
disappeared while flipping to its compliment. The initial
crystal is found to revive with a period that is slower
by a factor of 1.38(1) compared to1 Rabi-oscillation for
independent, non-interacting atoms. It is striking that
there are coherent and persistent oscillations of the crys-
tal because with respect to the quenched Hamiltonian
(∆ = 0), the energy density of the Z2-ordered state cor-
responds to that of infinite temperature ensemble1. Also,
while the Hamiltonian does not have any explicitly con-

served quantities (other than total energy), the oscilla-
tions nevertheless persist at periods larger than the natu-
ral timescales of local relaxation (1/Ω; emission) and the
fastest timescale (1/Vi,i+1; decoherence).

Furthermore, Bernien et al. show that that Z2-
ordered state cannot be characterized by a simple ther-
mal ensemble1. In the deep, Z2-ordered phase where
we get the effectively classical regime, the classical ther-
mal ensemble can be represented as ρ = exp(−βHcl)/Z,
with Z ≡ tr[exp(−βHcl)] and inverse temperature β.
The probability of finding a particular configuration i is
pi = exp(−βEi)/Z. The correlation function can be de-
termined from the characterized inverse temperature β of
a system which matches the experimentally determined
average domain-wall density. Bernien et al find that the
correlation length in the corresponding thermal state is
ξth = 4.48(3), which is longer than the measured corre-
lation length ξ = 3.03(6). The experimentally prepared
state is therefore not classically thermal, suggesting that
the system does not thermalize within the timescale of
Z2.

III. DISCUSSION

A full explanation of these observed oscillations, or
”many-body revivals”, are still lacking. Many-body
revivals repeatedly return to their initial state and fail
to thermalize irrespective of their prepared initial state.
The inconsistencies with ergodicity and thermaliza-
tion of the experimental results have spurred research
into so-called ”many-body quantum scars” to explain
the oscillations.6 At the time of writing, Bernien et
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al. proposed a simplified model to understand these
observations1. First, assume the effect of long-range
interactions is neglected; and second, that nearest-
neighbor interactions are replaced by a constraint
on neighboring excited Rydberg states. With these
assumptions, the behaviour of the quench dynamics can
be modelled by dimerized spins, as illustrated in Fig
5b. The Rydberg blockade constrains each dimer into
an effective spin-1 system with three states (|rg〉, |gg〉
and |gr〉). Fig. 5b demonstrates how the resonant drive

‘rotates’ the three states over the period
√

2(2π/Ω),
which is closer to what is observed experimentally.

Using a time-dependent variational principle, Bernien
et al. derive analytical equations of motion for the many-
body wave function based on matrix product states on all
blockade constraints (even though this dimer model ne-
glects interactions between dimers). An oscillation with
a frequency of about Ω/1.51 is found and matches var-
ious numerical simulations1. This model could be fur-
ther enhanced by the addition of long-range interactions
and the system is observed to decay at a faster timescale
(1/Vi,i+2) which better matches experimental observa-
tions of entropy. The observations by Bernien et al. indi-
cate that the decay of crystal observations is governed by
weak next-nearest-neighbor interactions and the system
decays much slower relative to a thermal model. This is

unexpected as the Hamiltonian is far from an integrable
system and shows neither strong disorder nor explicitly
conserved quantities, which would suggest it should ther-
malize more easily. The dimer model provides a better
approximation for these observations at this point.

IV. CONCLUSION

Bernien et al. demonstrated that a Rydberg excita-
tion of arrays of neutral atoms is a promising simula-
tor of many-body quantum dynamics in large systems.
These methods can be extended and improved in many
ways including: qubit rotations about different axes to
get spin-orbit effects; implementing a 2D array to get
very large systems; and better controllability by using
state-selective Rydberg excitation along hyperfine sub-
levels. These extensions would allow the exploration and
probing of new many-body phenomena in quantum dy-
namics. These include many-body coherence and entan-
glement, exploring stable non-equilibrium phases, many-
body scars, and the interplay between long-range inter-
actions and disorder. Finally, it should be noted that
this approach is also well suited for the physical realiza-
tion and testing of quantum optimization algorithms with
systems sizes that are unfeasible for classical computers.
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