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Recent discovery of many-body localization(MBL) in disordered systems have sparked intense
excitement. Unlike typical non-integrable many-body quantum systems, MBL systems do not
equilibrate under intrinsic dynamics, even at energy densities corresponding to infinite effective
temperatures. In one spatial dimension, the existence of a stable MBL phase has been essentially
confirmed, but the stability of MBL in higher dimensions remain controversial. This paper examines
the “avalanche” argument against the existence of MBL in two dimension and higher, discusses its
possible failure mechanisms, and reviews its implications for future theory and experiment efforts.
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I. INTRODUCTION

A non-integrable many-body quantum system evolv-
ing under its internal dynamics will, in general, ther-
malize at long times to some thermal ensemble set by
the initial energy density of the system. On the other
hand, many-body localized (MBL) systems do not equi-
librate under intrinsic dynamics, even at energy densities
corresponding to high or infinite effective temperatures.
Currently, MBL is the only known generic, stable excep-
tion to thermalization. Evading thermalization allows us
to preserve interesting quantum effects at high temper-
atures, and is hence desirable for a wide range of ap-
plications. In one spatial dimension, the existence of a
stable MBL phase has been essentially confirmed by the-
ory, numerics, and experiment. However, it is not clear
if stable MBL phases can exist in dimensions two and
higher. There are theoretical arguments for the instabil-
ity of MBL1, but there also exists experimental observa-
tion of a MBL-like phase in a two dimensional system2.
In this report, I would like to first introduce relevant def-
initions of thermalization and MBL. Then, I go over the
theoretical arguments against the existence of MBL in
two dimensions and higher1, which involves rare thermal
inclusions driving an “avalanche” that thermalizes the
entire system. Finally, I discuss the implications of these
arguments, including how we can reconcile them with ex-
periments like2, as well as and other possible routes for
evading thermalization in higher dimensions. In writing
this report, I have found the reviews3–5 to be very help-
ful.

II. RELEVANT BACKGROUND

The conventional framework of condensed matter
physics concentrates on studying phases of matter and
phase transitions in thermodynamic equilibrium. We

imagine the system we wish to study to be in contact
with an external reservoir. In this setting, we have well-
defined notions of temperature and thermal emsembles,
and states of the system can be specified by a few con-
served quantities, such as energy and particle number.
From a partition function, which may look something
like

Z = tr
(
e−βH

)
, (1)

we can calculate any macroscopic thermodynamic ob-
servables we desire, such as average energy, pressure, spe-
cific heat, and entropy.

Initially, it was unclear why and when we can use the
above framework to describe isolated quantum systems,
which do not exchange energy and particles with the envi-
ronment and evolve under unitary dynamics. The eigen-
state thermalization hypothesis (ETH)6 provides suffi-
cient conditions for isolated quantum systems to thermal-
ize. More explicitly, the ETH states that if an observable
O, written in some eigenbasis {|m〉} of the Hamiltonian,
has the form

〈m|O|n〉 = OMC

(
Ē
)
δmn + e−S(Ē)/2fO(Ē, ω)ηmn (2)

where

Ē =
Em + En

2
, ω = En − Em, (3)

S(Ē) is the entropy at energy Ē, OMC(E) is the expec-
tation value of O in the microcanonical ensemble with
energy E, ηmn is a random variable with zero mean
and unit variance, and OMC(E) and fO(E,ω) are both
smooth functions of their arguments, then the observable
O thermalizes in the sense that

1. The long time average OT agrees with the thermal
value [ρthO] for an appropriately chosen thermal
ensemble ρth

OT = lim
T→∞

∫ T

0

〈ψ(t)|O|ψ(t)〉 = tr [ρthO] (4)
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2. Fluctuations about this long time average is small
at most late times.

ETH specifies sufficient conditions for an isolated quan-
tum system to act as reservoir for its subsystems, and
bring itself to thermal equilibrium. Most few-body ob-
servables in non-integrable quantum systems obey ETH.
We expect these systems to look, in a sense, “classi-
cal”, because nontrivial quantum correlations in the ini-
tial state are hidden in inaccessible, global operators at
long times.

Thermalization is not the only possible fate for isolated
quantum systems. The other generic outcome is many-
body localization, which occur in systems with strong
disorder. Intuitively, the MBL phase occurs whenever the
transition rate between two eigenstates close in energy is
much smaller than the many-body level spacing. The
MBL phase is defined by the existence of an complete
set of commuting local integrals of motion (LIOMs) τzi ,
which are connected to exactly local spin operators σzi by
a quasi-local unitary trasnformation U . Throughout the
MBL phase, the system can be described by the effective
hamiltonian

HMBL =
∑
i

hiτ
z
i +
∑
ij

Jijτ
z
i τ

z
j +
∑
ijk

Jijkτ
z
i τ

z
j τ

z
k +... (5)

where hi are random site energies, and Jij , Jijk, ... ex-
ponentially decay with distance between LIOMs. Many
interesting and desirable properties of MBL, including
local memory, area-law entanglement, and localization
protected quantum order, can then be derived from this
LIOM picture.

The non-interacting version of MBL, the so-called An-
derson localization, or single-particle localization, has
been extensively studied and is fairly well understood.
Anderson’s original paper shows that the Hamiltonian
above realized on a d = 3 cubic lattice has a phase transi-
tion between a strongly localized, non-thermalizing phase
and a delocalized, thermalizing phase7. The relevant pa-
rameter is the ratio of disorder strength to single-particle
bandwidth. Subsequent scaling arguments have shown
that in d ≤ 2, even arbitrarily weak disorder is sufficient
to produce a localized system8. Recent work also shows
that stable Anderson localized phases exist in arbitrarily
high dimensions9. By comparison, true many-body local-
ization is only (almost) proven to exist in one dimension.
Imbrie10 explicitly constructed LIOMs for a particular
class of Ising spin Hamiltonian, and numerical studies of
the spin-1/2 random field Heisenberg model11 points to
a phase diagram which looks roughly like Fig. 1.

Comparing Anderson localization and MBL in Table I,
it is clear that interactions strongly destabilize the local-
ized phase. It is entirely conceivable (albeit disappoint-
ing) that thermalization is the only possible generic out-
come for interacting quantum systems in d ≥ 2.

MBLThermalizing

Disorder Strength

Energy 
Density

FIG. 1: Schematic phase diagram of disordered one dimen-
sional spin chain with a MBL phase. Adopted from11.

TABLE I: Existence of thermal and localized phases

Anderson Localization Many-Body Localization

d = 1 localized only localized + thermal

d = 2 localized only ?

d ≥ 3 localized + thermal ?

III. AVALANCHE ARGUMENT

Now let’s examine the argument of1 in detail. First,
we notice that in a lattice with random site energies, it is
possible to have rare regions in which all site energies are
close to each other. These regions with atypically weak
disorder can be locally thermalizing even if the global
phase is MBL. We thus wish to study the evolution of a
single thermal region in a MBL bulk phase. We imag-
ine a spherical thermal bubble with radius `b coupled to
localized spins with coupling strength exponentially de-
caying in distance to the bubble. A schematic of this is
shown in Fig. 2. The key question is: does this small
thermal bubble drive an avalanche that thermalize the
entire MBL bulk, or does the MBL bulk ultimately sup-
press the influence of the thermal bubble?

The combined system is described by the Hamiltonian

H = Hb +Hs +Hsb (6)

where Hb acts on the thermal bubble, Hs acts on the lo-
calized spins, and Hsb couples the bubble to the localized
spins via some local operator.

The thermal bubble is assumed to obey ETH. If we
denote the eigenstates and eigenvectors of Hb by |b〉 and
E(b), then the matrix elements of local operator V are
[c.f. Eq. (2)]

Vbb′ = 〈b|V |b′〉 = δbb′〈V 〉ε +
1
√
ρ

√
v(ω)ηb,b′ (7)



3

MBL

Thermal

ℓb

ℓc

FIG. 2: A rare thermal bubble in MBL bulk phase. The bub-
ble has radius `b. A hypothetical crossover region consisting
of LIOMs well hybridized with the bubble extend out distance
`c away from the bubble. Subsequent arguments show that
such a crossover region is fully thermal and grows without
bound.

where 〈·〉ε denote taking the thermal average at energy
density ε, ρ is the density of states, v(ω) is a smooth, pos-
itive function of ω = E(b)− E(b′), and ηb,b′ is a random
variable of with zero mean and unit variance. Implic-
itly, we have assumed that the bubble ensemble is near
energy density ε corresponding to maximum entropy, or
infinite effective temperature. This is equivalent to as-
suming that Hb is a random matrix. v(ω) is the spectral
function for operator V . In a bubble of linear dimen-

sion `b, there are approximately 2`
d
b states, so the den-

sity of states (neglecting a volume normalization factor)

is ρ ≈ 2`
d
b /W, whereW is the bubble bandwidth. The en-

ergy spacing between adjacent bubble energy eigenstates
is then 1/ρ.

The localized spins are described by LIOMs [c.f.
Eq. (5)]

Hs =
∑
i

hiτ
z
i (8)

which do not interact with each other, and |hi| ≤ W/2.
W is thus a “single particle” bandwidth for the localized
system. Since interactions tend to destabilize locality,
non-interacting LIOMs represent the best-case scenario
for lozalization. The LIOMs are exponentially localized
with localization length ζ.

LIOMs distance r away from the thermal region thus
interact with the bubble via an exponentially decaying
interaction with the same localization length:

Hsb =
∑
i∈s

grV ⊗ τxi , gr = g exp[−r/ζ] (9)

First, we consider a LIOM immediately adjacent to
the thermal bubble. The interaction term Eq. (9) tries

to flip the localized spin, causing the thermal bubble to
exchange energy 2h with the localized spin. The relevant
matrix element in perturbation theory is g

√
v(2h)/ρ. If

g
√
v(2h)/ρ� 1/ρ (10)

then we say the LIOM is absorbed into the the bubble.
The new combined system has twice the Hilbert space
dimension and half the level spacing. The authors show
that under certain assumptions, the new eigenstates are
random superpositions of old eigenstates, and the new
system stil obeys ETH with a new spectral function v′(ω)
almost identical to the original v(ω).

The initial condition Eq. (10) will be satisfied for large
enough initial bubble size `b. Then, we can iterate this
procedure so that the bubble-LIOM combined thermal
system extends out to a larger radius `c+`b. The density

of states is now ρ′ ≈ 2(`c+`b)d/W. The matrix element
for interacting with a new LIOM distance `c from the
original bubble boundary is g exp[−`c/ζ]

√
v(2h)/ρ′. The

condition for the new LIOM to become well-hybridized
with the thermal system is

g
√
v(2h) exp

[
1

2
(`c + `b)

d − `c/ζ
]
� 1 (11)

The condition Eq. (11) can always be satisfied for large
enough `c in dimensions d > 1, so the thermal sys-
tem continues to grow. Intuitively, the superexponential
growth of the thermal Hilbert space overwhelms the ex-
ponentially decaying interactions. From this inductive
scenario, the authors conclude that MBL is unstable in
dimensions d > 1, because any large enough rare ther-
mal bubble will create an avalanche that delocalizes the
entire system.

IV. DISCUSSION

The argument1 presented above has been tested nu-
merically in small systems12 with good agreement. It is
also consistent with the existence of MBL in one dimen-
sion, only placing an upper bound on the localization
length ζ13. Personally, I find this argument convincing,
especially since there has been no other rigorous theoret-
ical work suggesting that MBL is stable in higher dimen-
sions.

However, subsequent works have also presented valid
critiques. The argument of1 relies on the strong assump-
tions that the thermal region is modeled by random ma-
trix theory throughout its growth. Random matrix the-
ory ignores inevitable correlations in the bubble Hamil-
tonian. It is also not physical to assume the spectral
function v(ω) remains entirely unchanged as new LIOMs
are incorporated into the thermal system. We should ex-
pect some “back-action” from the MBL system on the
bubble which modify the bubble spectral function and
level statistics.12 suggests the back-action may require
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the initial bubble size to be larger than estimated by1 for
the avalanche to succeed.

Furthermore, even if the argument1 is essentially valid,
we should keep in mind that thermal bubbles are ex-
ponentially rare events. The system size required for a
large enough thermal bubble to appear with reasonable
probability may soon exceed length scales accessible in
experiment. The timescales required for the core bubble
to hybridize with distant LIOMs is also exponentially
long. Thus, for strongly localized systems with experi-
mentally accessible length- and time-scales, the system

can act localized, even if they are ultimately thermal in
the asymptotic limit. This may be what is occuring in
experiments that claim to observe signatures of MBL in
two dimensions2.

We have not yet reached the the end of the road
for avoiding thermalization in higher dimensions either.
MBL may still be stable in quasiperiodic systems, where
rare thermal regions cannot occur14,15. People are also
searching for other generic mechanisms for ergodicity-
breaking, such as Hilbert space shattering16 and Stark
localization17.
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