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In quantum many-body systems, evolution in time has a tendency to increase the entanglement
between any two regions. The precise dynamics of this entanglement growth can be a valuable
lens into understanding a system’s dynamical properties. In this work, we review some results
in this field, particularly focusing on the roles played by different measures of entanglement. We
pedagogically introduce a family of measures of entanglement known as the Rényi entropies. We
review some qualitative features of entanglement growth in different systems, and particularly study
a case studied recently where different Rényi entropies behave very differently. In certain systems,
the presence of a conserved charge that spreads diffusively in time results in a slower growth of some
Rényi entropies than might otherwise be expected, namely growing as ∼

√
t rather than the more

typical ∼ t.
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FIG. 1: This shows pictorially the argument for why Rényi
entropies with α > 1 will grow slowly in certain systems with
conserved quantities, as discussed in the text. In this case, the
system is a spin-1/2 chain with total spin conserved. Above
is shown a typical product state of a spin chain in black, and
below is a charge-protected mode of this state. The charge
density shown in red is the charge associated with the con-
served spin. Because charge is conserved, a region with no
spin can only have trivial dynamics unless there is an in flux
of charge from some other region. Thus entanglement cannot
be generated across the cut for the charge-protected mode
due to its void of charge around the cut, until such time has
passed that the charge has had time to diffuse into the middle
of the chain.

I. INTRODUCTION

In every branch of physics, major developments often
arise after the introduction of new theoretical or exper-
imental tools that allow us to ask new questions about
physical systems. A number of recent developments has
allowed us to ask many more theoretical questions about
quantum many-body dynamics, which can be said to fall
broadly into two categories – tools that allow the study
of a greater variety of systems (such as tensor network

methods, and analytical tools for studying random cir-
cuits), and tools that allow us to ask new questions of
familiar systems (such as probing quantum chaos via out-
of-time-ordered correlators). Here we investigate a recent
development of the latter category, namely the study of
entanglement dynamics of many-body quantum systems.

Entanglement is a distinct type of correlation present
in quantum systems, and is known to play a key role in
many parts of physics – including quantum foundations,
black hole information theory, thermodynamics, quan-
tum computing and many more. There are many more
ways for a system to be entangled than to be unentan-
gled, which gives measures of entanglement an entropic-
like tendency to grow in time for generic systems. The
details of how this entanglement growth occurs can reveal
distinct characteristics of the system in question, such as
indicating whether a system exhibits localization, distin-
guishing integrable systems from thermalizing systems,
and even signalling the existence of a local conserved
charge.

One thing that sets entanglement apart from most
other tools for studying quantum many-body dynam-
ics is that it is not quantified via correlation functions
of observables – rather, it is an inherently nonlinear
quantity. To see why entanglement must be nonlinear,
just consider two distinct unentangled states |φ〉 and
|ψ〉. Their superposition can be strongly entangled de-
spite both individual states being completely unentan-
gled, so for any measure of entanglement S, we have
S(|φ〉) + S(|ψ〉) = 0 6= S(|φ〉+ |ψ〉).

How do we construct a measure of entanglement for a
many-body system? First, we make a “cut” through the
system to partition it into two regions. If one has access
to only one of these regions, then the state of the sites
in that region are not described by a pure quantum state
but by a density matrix – which is essentially a proba-
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bility distribution over a set of pure states, with the ran-
domness arising from the ignorance about the state of
the other region. This probability distribution is known
as the entanglement spectrum, and completely charac-
terizes the strength of the correlations between the two
regions in the state |ψ〉. Loosely, the more uncertain this
probability distribution, the more entanglement between
these regions. There are many different classical ways
of characterizing the “uncertainty” (or “entropy”) of a
probability distribution, each of which corresponds to a
measure of entanglement when applied to the entangle-
ment spectrum of a state.

A particularly well-studied family of measures is known
as the Rényi entropies1, which are a family parametrized
by a nonnegative real number α. For α > 1, these en-
tropies are primarily indicators of how small the largest
probability in the entanglement spectrum is. At α = 1, it
reduces to the well-known von Neumann entropy (or “en-
tanglement entropy”), which measures the “typical order
of magnitude” for a probability taken from this distribu-
tion. Finally, for smaller α < 1, the Rényi entropies are
more dominated by the smaller probabilities in the spec-
trum, reflecting more the number of probabilities in the
distribution rather than their magnitudes.

A typical state (i.e. one chosen at random according to
a uniform distribution) will almost always have the max-
imal amount of entanglement according to all of these
Rényi entropies2 – much like the entropy of a thermo-
dynamic system16. That means that for generic time
evolution of a quantum system, we should expect all of
the Rényi entropies to increase. The most straightfor-
ward way to study the dynamics of entanglement is to
begin with a state that is fine-tuned to have minimal ini-
tial entanglement – such as product states – and see how
it dynamically approaches the equilibrium value.

In this report, we will summarize some of the scenar-
ios where entropies with different α play different roles
in characterizing the dynamical behaviour of many-body
systems. In particular, we will discuss a recent finding3–5

that in certain systems with a conserved quantity that
spreads out diffusively in time, the Rényi entropies at
α > 1 grow much more slowly than the the von Neu-
mann entropy (i.e. the α = 1 case).

Here, we give more technical details to support the
discussion above. In section II, we introduce in math-
ematical detail the Rényi entropies. We then overview
some features of the dynamics of these entropies in sec-
tion III. Finally, we discuss a particular case in which
higher Rényi entropies behave qualitatively differently to
the usual von Neumann entropy in section IV.

II. ENTANGLEMENT

In the context of lattice systems, we will study entan-
glement by partitioning the lattice sites into two con-
nected regions A and B. In other words, we will try to
quantify how much the degrees of freedom on either side

of a boundary in the lattice are dependent on and inter-
connected with one another. We will also assume that
the overall state of the system is a pure state – this is a
convenient choice, because the theory of entanglement for
pure states is much simpler than that of mixed states17.
We will see that in this case, the entanglement between
the degrees of freedom in regions A and B will be com-
pletely characterized by a set of real numbers {λk} that
we will refer to as the entanglement spectrum, also known
as the Schmidt values.

The Hilbert space for the lattice system is simply a
tensor product of the local Hilbert spaces in each region,
H = HA ⊗HB . A state |ψ〉 ∈ H is called a product state
with respect to this decomposition if it can be written as

|ψ〉 =
∣∣ψA〉⊗ ∣∣ψB〉 . (II.1)

Physically, this means that the state is uncorrelated
across the two regions; any measurement of a local ob-
servable OA in HA will depend only on

∣∣ψA〉,(〈
ψA
∣∣⊗ 〈ψB∣∣) (OA ⊗ 1B)

(∣∣ψA〉⊗ ∣∣ψB〉) =
〈
ψA
∣∣OA ∣∣ψA〉 ,

(II.2)

and similarly for local observables in HB . Such a state
is unentangled, as the state in HA can be completely
described without any reference to HB .

More generally, any state in H can be written as a
linear combination of product states. In particular, we
can show that any state has a Schmidt decomposition
defined by

|ψ〉 =

min(dA,dB)∑
k

λk
∣∣ψAk 〉⊗ ∣∣ψBk 〉 , (II.3)

where λk ≥ 0 satisfy
∑
k λ

2
k = 1,

∣∣ψAk 〉 (
∣∣ψBk 〉) is an

orthonormal set of states in HA (HB), and dA (dB) is
the dimension of HA (HB).

The derivation is as follows. Suppose we have an or-

thonormal basis
{∣∣φAi 〉}dAi=1

forHA and a basis
{∣∣φBj 〉}dBj=1

for HB , with dim(HA) = dA and dim(HB) = dB . Then{∣∣φAi 〉⊗ ∣∣φBj 〉}i,j is a basis for the Hilbert space H, and

we can write any |ψ〉 as

|ψ〉 =
∑
i,j

ci,j
∣∣φAi 〉⊗ ∣∣φBj 〉 . (II.4)

Now we can perform a singular value decomposition on
the matrix cij . A singular value decomposition for any
dA × dB matrix Mij (including non-square matrices!) is
given by

Mij =

min(dA,dB)∑
k

UikλkV
†
kj , (II.5)

where λk are nonnegative real numbers, and U†U =
V †V = 1, i.e. if M is square then U and V are unitary18.
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Doing this for cij in eq. (II.4) gives

|ψ〉 =
∑
i,j,k

Ui,kλkV
†
kj

∣∣φAi 〉⊗ ∣∣φBj 〉 . (II.6)

Now, we can define a new (partial) basis for each space

given by
∣∣ψAi 〉 =

∑
i Uik

∣∣φAi 〉 and
∣∣ψBk 〉 =

∑
j V
†
kj

∣∣φBj 〉,
and we see that eq. (II.3) is satisfied.

By performing a partial trace on B, one finds that

ρA = TrB(|ψ〉〈ψ| (II.7)

=
∑
k

λ2k
∣∣ψAk 〉〈ψAk ∣∣ (II.8)

i.e. the Schmidt values also play the role of the eigen-
values of the reduced density operator ρA (and likewise
for A↔ B).

If only one Schmidt value λk is nonzero, then it must
equal one, and |ψ〉 is a product state of the form eq. (II.1).
Otherwise, the state is entangled, because local observ-
ables will not factorize like in eq. (II.2). The strength
of this entanglement is completely characterized by the
entanglement spectrum {λk}, and one can construct spe-
cific measures of entanglement strength via functions of
this spectrum. The most common measure is the von
Neumann entropy, defined as

S = −
∑
k

λ2k log λ2k, (II.9)

where all logarithms in this work are defined in base 2 for
simplicity when working with qubits and spin- 12 chains.
A more general family of entropies parametrized by some
real α ∈ (0,∞) is given by19

Sα =
1

1− α
log
∑
k

λ2αk , (II.10)

known as the Rényi entropies. One can verify using
l’Hôpital’s rule that

S = lim
α→1

Sα. (II.11)

What kind of information does each Sα contain about
the entanglement spectrum? To answer this, let us con-
sider the limiting cases, S0 := limα→0 Sα and S∞ :=
limα→∞ Sα. S0 is known as the Schmidt rank or the
Hartley entropy, and one can verify that it is simply

S0 = log (number of nonzero λk) . (II.12)

The Rényi entropies are also monotonically non-
increasing with α, as can be seen by taking a derivative
dSα
dα ≤ 0. This also means that all of the Rényi entropies

are upper bounded by the maximum possible value of
S0, which is log d where d := min(dA, dB). In fact, this
maximum is obtained for all α when the entanglement
spectrum is flat, i.e. when all Schmidt values are equal,

∀k, λk =
1

d
=⇒ Sα = log d. (II.13)

A state with a flat entanglement spectrum is said to be
maximally entangled, and the reduced density matrix on
the smaller subsystem is the maximally mixed state ρ =
1
d1.

For S∞, we can use l’Hôpital’s rule again to find that
it depends only on the largest Schmidt value λmax, as20

S∞ = − log λ2max (II.14)

Note that
∑
k λ

2α
k ≥ λ2αmax, which gives a upper bound on

Sα for α > 1, as

Sα ≤
α

1− α
log λ2max =

α

α− 1
S∞, α > 1 (II.15)

Combining this with the monotonicity property dSα
dα ≤ 0

from before, we see that for α > 1, Sα is “sandwiched”
by S∞,

S∞ ≤ Sα ≤
α

α− 1
S∞, α > 1 (II.16)

− log λ2max ≤ Sα ≤
α

1− α
log λ2max, α > 1

Note that this bound does not apply to the von Neumann
entropy, S; in fact it can be arbitrarily large for any fixed
λmax so long as λmax < 121.

To summarize this discussion, as α increases, the Rényi
entropy becomes more and more dominated by the very
largest Schmidt value, to the point that for α > 1 it is
bounded from above and below by a function of λmax. In
contrast, for smaller α the entanglement is more “egali-
tarian” and counts all Schmidt values more evenly.

III. OVERVIEW OF ENTANGLEMENT
DYNAMICS

Suppose that our state has some dependence on time,
|ψ〉 = |ψ(t)〉. Then our Schmidt decomposition will also
depend on time, as

|ψ〉 =

min(dA,dB)∑
k

λk(t)
∣∣ψAk (t)

〉
⊗
∣∣ψBk (t)

〉
. (III.1)

Although much of the important information about the
evolution of |ψ(t)〉 is contained in the time-dependence of
the basis vectors, we wish to focus on the dynamics of the
entanglement, which as discussed above is fully character-
ized by the spectrum λk(t). Each of the Rényi entropies
discussed above are now time-dependent functions that
measure the evolution of the entanglement over time, as

Sα(t) =
1

1− α
log
∑
k

λk(t)2α. (III.2)

We will now discuss a few examples to give a sense
for how the different Rényi entropies represent different
information about the entanglement dynamics of a sys-
tem. It will generally be assumed that the initial state
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|ψ(0)〉 is a product state, meaning that its entanglement
spectrum is just {1, 0, 0, 0 . . . } and the Rényi entropies
are trivial: ∀α, Sα(0) = 0.

Let’s start with an extreme example, namely the dy-
namics of the Schmidt rank, S0(t), in a local Hamiltonian
system. We can heuristically argue that it will behave
discontinuously as,

S0(t) =

{
0, when t = 0

Sf0 , when t 6= 0
. (III.3)

To see this, note that the form of the state for any time
t is,

|ψ(t)〉 = e−iHt |ψ(0)〉 =

∞∑
n=0

(−iHt)n

n!
|ψ(0)〉 . (III.4)

This time-evolved state will always remain in the sub-
space spanned by states of the form Hn |ψ(0)〉. Because
H has local interactions, each application of H does not
generate much entanglement between different regions,
and the first few terms will only be weakly entangled.
Terms with higher order applications of Hn will be more
strongly entangled, but at early times will be suppressed
by tn. But the Schmidt rank S0 cares only about whether
terms are nonzero, not about how large they are. These
highly entangled states in the sum will require a large
number of terms in the Schmidt decomposition, and un-
less there are finely-tuned cancellations with other terms
(which will only happen at a measure-zero set of t val-
ues), we should expect these terms to also contribute to
the Schmidt decomposition of |ψ(t)〉. The late-time value

Sf0 will depend on details of H, in particular the size of
the subspace spanned by Hn |ψ〉.

Of course, at small t, the amplitude of these terms will
remain very small, which will mean that Sα(t) will remain
small for α > 0; the discontinuous behaviour above is
unique to S0(t)22. For small t the n = 0 term in eq. (III.4)
will dominate, which ensures that the α > 1 will remain
close to zero due to eq. (II.16). Sα(t) for 0 < α ≤ 1
will also remain small, because of the exponential tail in
higher-order terms in the expansion.

The evolution of Sα for nonzero α is more subtle, and
depends on the details of H itself. The most straightfor-
ward to interpret is the von Neumann entropy, S, because
of some of its nice mathematical properties. Unlike the
other entropies, it exhibits subadditivity, which guaran-
tees that shifting the cut by a single site will not alter
S by more than one unit. This property provides the
von Neumann entropy a nice physical interpretation: it
counts the number of effective qubits that are separated
across the entanglement cut, i.e. if you take N EPR pairs
and put one particle of each on either side of the cut, the
von Neumann entropy will be N23.

This qubit picture is quite literally correct for inte-
grable systems! Such systems can be completely de-
scribed by an effective quasiparticle description, in which
entanglement is generated across the cut when a quasi-

particle passes across it6. This means that as quasi-
particles “free stream” throughout the system with con-
stant velocity, the entanglement spreads linearly in time.
These quasiparticles carry both information and energy,
meaning the behaviour of these two quantities is very
similar in integrable systems.

It turns out that this is not always the case, however.
For chaotic systems, energy typically spreads diffusively,
i.e. it covers a distance proportional to

√
t like for a

random walk. Nonetheless, the entanglement continues
to spread ballistically, as first pointed out by Kim and
Huse7. In chaotic systems it is believed generally that
the following holds8,

d

dt
S = vEsthA, (III.5)

where A is the surface area of the cut (which is one in
the 1D systems that we consider here), sth is the equi-
librium entropy density of the system, and vE is a con-
stant known as the entanglement velocity. The form of
the equation suggests a picture of an inward “flux” of
entanglement with density sth that flows across the cut
at a speed vE . This picture (known as the entanglement
tsunami picture) is useful in interpreting the above equa-
tion, but it is not a perfect analogy; entanglement is not
conserved, so it does not so much “flow” as it is generated
over time9.

Another class of systems with interesting entanglement
dynamics is that of many-body localized systems. In such
systems, large disorder disrupts the spreading of energy,
as well as operator spreading, and similarly, it provides
an obstacle to the generation of entanglement. It is be-
lieved generally that in such systems, entanglement grows
logarithmically in time10. Furthermore, there is an inter-
esting crossover between such highly-disordered localized
systems and more weakly disorded thermalizing systems.
In systems with isolated regions that locally resemble the
localized phase, the entanglement entropy grows not lin-
early but as a power law S(t) ∼ tβ , with 0 < β < 111,12.

All this discussion has just been for the von Neumann
entropy, which is the entanglement measure that gener-
ally receives the most attention in the literature. What
about other Rényi entropies?

In some systems, the distinction is trivial! A unitary
time evolution operator that maps tensor products of
Pauli operators into other tensor products of Pauli op-
erators is said to be an element of the Clifford group.
This kind of dynamics is known to be efficiently simu-
lated classically13, which makes them numerically useful
in many circumstances. This result is a consequence of
the stabilizer formalism, which also has an interesting
consequence for our purposes – namely, that the entan-
glement spectrum of a stabilizer state is always flat, i.e.
all of the Rényi entropies are equal to one another14!

However, in the example that we are about to explore
in some depth, the Rényi entropies have markedly differ-
ent behaviour depending on whether α > 1 or not.
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IV. RÉNYI ENTROPIES WITH α > 1 AS A
PROBE OF TRANSPORT

While chaotic systems generally have linear S(t), the
behaviour of Sα(t) depends on the behaviour of conserved
quantities. In particular, certain systems with conserved
quantities that spread diffusively will have Sα(t) grow as√
t rather than linearly at late times for α > 1. This was

originally suggested by Rakovszky et al3, with evidence
from charge-conserving random unitary circuits and the
tilted field Ising model (at least, under typical initial con-
ditions and at late times). It was more rigorously shown
in a later work by Huang4 that this can be shown in gen-
eral for sufficiently typical states of any charge-conserving
(not necessarily random!) unitary circuit with diffusive
energy transport. This was then expanded upon in a
work by Zhou and Ludwig5 following very similar logic
but in a Heisenberg picture framework. We will outline
Huang’s argument here.

The key requirement in this work, aside from the exis-
tence of a local conserved charge with diffusive dynamics,
is that there is a local charge sector with trivial dynamics.
Let us clarify what we mean by this.

Consider a spin- 12 lattice with overall conservation of
spin. If the system begins with all spins in the |↓〉 state,
then it must be completely unaffected by the dynamics,
because the subspace of states in that spin sector is only
one-dimensional. Now suppose a certain region is in the
|↓〉 state, but the rest of the system is not. Then provided
the time evolution is local, that region will still be mostly
unaffected by the time evolution, as the spin must be lo-
cally conserved. Gradually, positive spin can leak in from
other parts of the system, and eventually the dynamics
will become nontrivial again. But so long as a region is in
this sector of minimum spin, the dynamics remain triv-
ial, and thus no entanglement can be generated across a
cut in this region.

Not all systems with conservation laws are like this!
Consider a similar system but with each site now having
two independent qubits on it, one of type a and one of
type b, i.e. each site of the lattice has a four-dimensional
local Hilbert space H = Ha ⊗Hb. Then if only the spins
of type a are conserved by the dynamics, the above prop-
erty no longer applies! Entanglement can still be gener-
ated even in a region of minimum a spin, because of the
degrees of freedom afforded by the b qubits.

Our argument for slow growth of higher Rényi en-
tropies relies on the fact that entanglement cannot be
generated in a region with appropriate charge, so to pro-
ceed we must assume that there is a local charge sector
with trivial dynamics. Without this assumption, a similar
argument would follow showing that the Rényi entropies
still have a term contributing of the form ∼

√
t, but also

a more dominant linear term that overshadows it3.
Under this assumption, then, let us outline the deriva-

tion of the Rényi entropy growth. For any time t, the
slow diffusion of charge guarantees that a typical initial
state will contain a mode that is protected against en-

tanglement; which guarantees the existence of a term
in the Schmidt decomposition λmax with comparatively
large amplitude. The relationship between an unentan-
gled mode of a state |ψ〉 and an upper bound on its Rényi
entropy arises from the Eckart-Young theorem15:

Theorem IV.1. For any state |ψ〉 whose largest Schmidt
value is λmax, and any product state |φ〉 = |φA〉 ⊗ |φB〉,
the following inequality holds.

|〈φ|ψ〉| ≤ λmax (IV.1)

This in turn gives an upper bound to the Rényi en-
tropies according to eq. (II.16).

For a given time t, we can apply this theorem to the
state |ψ(t)〉 to obtain a bound on the Rényi entropies
at that time. We should choose a product state |φ(t)〉
to have as large overlap as possible with |ψ(t)〉, to give
the strongest possible lower bound on λmax (and thus
the strongest possible upper bound on the growth of the
Rényi entropies). Note that |〈φ(0)|ψ(0)〉| = |〈φ(t)|ψ(t)〉|,
so as long as the two states start at t = 0 with signif-
icant overlap, this will remain true at late times. The
key trick of Huang’s is to make a clever choice of prod-
uct state |φ(0)〉. We pick one as shown in fig. 1, with a
region of zero charge in the middle near the cut between
regions, and make it look as much like |ψ(0)〉 as possible
everywhere else. This state is completely unentangled to
begin with, and the fact that this remains true as time
goes on is thanks to our assumption of a local charge sec-
tor with trivial dynamics; no entanglement can generate
if there’s no charge near the cut! It will continue to be
unentangled up to a time of order

√
t when the charge

has had time to “leak” into the void.
Most of the technical difficulties in the paper arise from

the small but nonzero chance that charge leaks in towards
the cut much faster than is typical. The resolution to this
challenge is to consider a slightly modified version of the
time evolution operator U , which we call Ũ , such that Ũ
does not produce any entanglement across the cut (i.e.
simply remove any interactions between sites on either
side). By evolving with Ũ , an initial product state will

remain a product state, so
∣∣∣φ̃(t)

〉
:= Ũ |φ(0)〉 can be used

for the Eckart-Young theorem eq. (IV.1). So long as only
a small amount of charge leaks into the void all the way

to the cut,
∣∣∣φ̃(t)

〉
will be very similar to |φ(t)〉, which in

turn will be not too different to |ψ(t)〉.
How large should the void be? We have two conflicting

factors here. A large void reduces the chance of charge
leaking all the way to the centre, which means that |φ(t)〉
is more similar to

∣∣∣φ̃(t)
〉

. However, it also reduces the

overlap |〈φ(0)|ψ(0)〉|, because less of the state resembles

|ψ〉! This in turn reduces the overlap
∣∣∣〈φ̃(t)

∣∣∣ψ(t)
〉∣∣∣ and

leads to a weaker bound via eq. (IV.1). The optimal
choice of state |φ(0)〉 (i.e. the one that leads to the tight-
est bound) turns out to be one with a void of width ∼

√
t.
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One final subtlety to mention is that this argument
only holds for typical initial states24, but can fail for spe-
cific choices of |ψ(0)〉. To understand this, suppose that
|ψ(0)〉 is a tensor product of alternating Pauli z eigen-

states. Then any state with a central void will have zero
overlap with |ψ(0)〉, which completely eliminates the use-
fulness of the Eckart-Young theorem. Such initial states
can lead to linear growth of the Rényi entropies3.
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