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The aim of this report is to review the phase diagram of the periodically-driven (a.k.a. Floquet)
disordered Ising chain, as obtained in Ref. [1]. This model is important as it is one of the simplest
models that display spontaneous discrete time-translation symmetry breaking (dTTSb). I will also
review Ref. [2], where the phase transitions of this model are studied in terms of emergent Majorana
fermions. Finally, I discuss the stability of the one of the phases even in the absence of Ising
symmetry following Ref. [3].
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I. INTRODUCTION

Traditional phases of matter were defined using Lan-
dau symmetry-breaking theory [4, 5] in undriven local
systems as follows. First, we identify the symmetries
of the Hamiltonian and an local observable that trans-
forms non-trivially under said symmetries, a.k.a. order
parameters. We then say that a symmetry is broken if
the corresponding order parameter Oi display long-range
order: 〈OiOj〉 − 〈Oi〉 〈Oj〉

|i−j|→∞−−−−−−→ C2 6= 0.

After years of studying phases of matter in time-
independent systems there was an obvious question:
what new phenomena can appear in time dependent sys-
tems. In particular, how do we define a phase of matter
in this setting? A natural place to look for new physics
is to study some version of the quantum Ising chain as it
lends itself to analytical and numerical techniques. The
particular model I will explain is the periodically-driven
disordered Ising chain. The interest on this model will
hopefully becomes clear in the following.

First of all, the period-driven systems, a.k.a. Floquet
systems [6, 7], posses a discrete time translation sym-
metry that can in principle be spontaneously broken [8].
There is no straightforward way to use the standard Lan-
dau symmetry-breaking theory [4, 5] as we can no longer
define a thermal state because energy is no longer well-
defined. Therefore we need to study the properties of cor-
relation functions in generic states of the Hilbert space
but it is often good enough to restrict to study all the
eigenstates. This notion is called eigenstate order [9–12]

and will be explained in Section III. It is common believe
[13, 14] that translation invariant interacting systems will
"heat to infinite temperature" under a periodic drive, i.e.
all correlation functions show no dependence on the ini-
tial state for long times, which is already a possibility
in static systems. The intuition from a linear response
point of view is that in the presence of translation invari-
ance, the eigenstates are extended and can then easily
exchange energy between each other. The role of disor-
der will be to localize the modes in the Ising chain even in
the presence of small interactions [11, 15], thus avoiding
all-to-all energy exchange and heating.

In the following, I will review some background notions
of periodically-driven (a.k.a. Floquet) systems, discrete
time-translation symmetry breaking (dTTSb), eigenstate
order and the (static) disordered Ising chain. After this I
will review the phase diagram of the disordered Floquet
Ising chain in the presence of Ising symmetry.

II. BACKGROUND: FLOQUET SYSTEMS AND
DTTSB

Floquet systems [6, 7] have a periodic Hamiltonian,
H(t) = H(t + T ) for some T > 0. The Floquet unitary
is defined as

UF = U(0, T ) = T exp

[
−i
∫ T

0

H(t) dt

]
,



where T is time ordering. UF corresponds to time evolu-
tion for a period T . Instead of diagonalizing the Hamilto-
nian at every time, it is convinient to diagonalize the Flo-
quet unitary. The Floquet eigenvectors |φα〉 with quasi-
energy εα are defined as

UF |φα〉 = e−iTεα |φα〉 ,

with quasi-energies defined modulo 2π/T . Studying the
properties of these eigenvectors is enough to understand
the dynamics of the system under discrete time evolution
with time-step T as they form a basis for the state space.

As in undriven systems, we can think of |φα〉 as be-
ing eigenstates of an effective Floquet Hamiltonian HF

defined by UF = exp(−iTHF ). The issue with this def-
inition is that HF is not uniquely defined due to the
periodic identification of the quasi-energies and, in addi-
tion, there is no guarantee that HF has nice properties
as locality. If HF was local, we could use all the machin-
ery already known for equilibrium systems. Nevertheless,
this is not always true. An special case where HF is eas-
ily constructed is when T is much smaller that the energy
scales of H(t) at everytime. In this case, we could just
use perturbation theory to find a local HF .

As the Hamiltonian has period T , there is a discrete
time-translation symmetry of shifting time by integer
multiples of T . Similar to the standard spontaneous
breaking of a symmetry, a Floquet system has sponta-
neous dTTSB [16] when the correlation function in the
infinite system size limit of local operators whose distance
is taken to infinity have a period larger than T for late
times.

III. BACKGROUND: EIGENSTATE ORDER
AND PHASES OF THE DISORDERED ISING

CHAIN

The traditional study of static phases of matter cen-
tered in the properties of observable restricted on the
ground-state manifold or thermal states. Nevertheless,
while studying many-body localized (MBL) systems [9–
12] it became clear that we should also consider other
properties of the energies and eigenstates of the Hamilto-
nian, thus referred to as eigenstate order. Among these
properties are the entanglement structure of the eigen-
states and spectral properties of the energies (e.g. distri-
bution of the difference between consecutive energies).

For concreteness, consider the disordered quantum

Ising chain consisting of spin-1/2 degrees of freedom on
an open chain of size L with Hamiltonian

H =

L−1∑
i=1

Jiσ
z
i σ

z
i+1 +

L∑
i=1

hiσ
x
i

+Kx

L−1∑
i=1

σxi σ
x
i+1 +Kz

L−1∑
i=2

σzi−1σ
z
i+1.

where σa=x,y,zi are Pauli matrices of the spin on site
i. Ji and hi correspond to random interactions and mag-
netic fields respectively. Kx and Kz are small interaction
terms. As pointed out in [9], these model has (among
other phases) an MBL paramagnet (PM) phase and a
MBL spin-glass (SG) phase[17]. The eigenstates deep
in the MBL PM phase correspond to eigenstates ten-
sor products of spins polarized in the transverse direc-
tion. The MBL SG phase corresponds to the Ising dual
of the PM, i.e. the domain walls (change in orientation
of spins along the interaction direction) are the ones that
are frozen. The main physical difference between these
two phases is the presence long-range magnetic order in
the SG phase, i.e. all eigenstates in SG break the Ising
symmetry.

Away from deep of the phases but still in the local-
ized regime, the phases can be understood in terms of an
emergent integrability [18, 19]. The upshot is that in this
regime, there is a change of basis from the original spin
dofs σai to some new dressed versions of them τai that are
exponentially localized at site i and commute with each
other. The new variables are called l-bits ( see Fig. 1).
The emergent integrability means that in the infinite size
limit, the Hamiltonian commutes with an infinite num-
ber of conserved charge that correspond to an infinite set
of the l-bits.

In particular in the MBL PM and MBL SG, the Hamil-
tonians written in l-bits basis become respectively

H̃PM [{τxi }] =
∑
i

h̃iτ
x
i +

∑
ij

K̃ijτ
x
i τ

x
j + . . .

H̃SG[{τzi τzi+1}] =
∑
ij

J̃ijτ
z
i τ

z
j

+
∑
ijkl

L̃ijklτ
z
i τ

z
j τ

z
k τ

z
l + . . .

(1)

where h̃i, K̃ij , J̃ij and L̃ijkl are exponentially decaying
couplings and the dots correspond to terms with more
spins. In the MBL PM the conserved charges are {τxi }
while in the MBL SG are {τzi }. As the SG Hamilto-

2



τai = Uσai U
†

FIG. 1. (Adapted from Ref. [16], Source: Vladimir Calvera)
The l-bits τai are dressed versions of the physical σa

i with
exponentially suppressed (in distance) weight on the other
spins.

nian only depends on the product of two τzi , we see that
the spectrum will be degenerated as there is an emergent
symmetry P̃x =

∏
i τ
x
i which corresponds to flipping the

value of the l-bits in the z basis. This is true in the
infinite system size, while for the finite system the de-
generacy is only true up to exponential accuracy and the
different between the two states correspond to filling a
mode localized on the boundaries of the chain.

The notion of eigenstate order is extended to the Flo-
quet setting [1] by studying the properties of the Floquet
eigenstates evolved over a period instead of the energy
eigenstate of the static case.

IV. MAJORANA LANGUAGE

It is easier to understand the degeneracy of both the
undriven and driven systems by making a change of basis
to Majorana fermions. For a more complete review see
Appendix A. The upshot is that there are two Majorana
fermions γA,Bi build as σz,yi dressed by a chain of all σxj
to the left of i. These operators are Majorana fermions
because they anticommute with each other and square
to one. The zero mode of the previous section can be
understood as the existence of linear combinations of the
Majorana modes, γL/R, that commute with H and are
localized on the left/right edge.

V. THE MODEL

Similarly to the static disorder chain of the previous
section, the Floquet disorder chain consists of an open
chain of L spin- 12 degrees of freedom driven by a Hamil-

FIG. 2. Phase diagram for the Floquet Ising chain adapted
from Ref. [1] (Source: Vladimir Calvera).

tonian that for a half the period equals a Hamiltonian
deep in the SG phase (Hz) and the other half of period
is a Hamiltonian deep in the PM phase (Hx), i.e.

H(t) =

{
Hz , t ∈ [0, T/2)

Hx , t ∈ [T/2, T )
,

Hz =

L−1∑
i=1

Jiσ
z
i σ

z
i+1 +Kz

L−1∑
i=2

σzi−1σ
z
i+1,

Hx =

L∑
i=1

hiσ
x
i +Kx

L−1∑
i=1

σxi σ
x
i+1,

with hi(Ji) taken from uniform distributions with mean
h(J) and width δh(δJ). Kx and Kz correspond to small
interactions terms. Important to the study of phases are
the Ising symmetry (Px =

∏L
i=1 σ

x
i ) and the dTTS with

period T .

VI. PHASE DIAGRAM

Before proceeding, it is worth pointing out some re-
lations between different values of h and J . Consider
the unitary transformations Pz =

(∏L
j=1 σ

z
j

)
and Qx =(∏bL/2c

j=1 σx2j

)
, then

P−1z · UF (Ji, hi) · Pz = UF (Ji,−hi), (2)

Q−1x · UF (Ji, hi) ·Qx = UF (−Ji, hi). (3)

Which means that the phases with (J, h), (−J, h), (J,−h)

and (−J,−h) are all easly related.
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There is also a periodicity in J and h. Consider

hi −→ hi + π/T : UF −→ PxUF (−i)L,
Ji −→ Ji + π/T : UF −→ UFσ

z
1σ

z
L(−i)L−1.

(4)

As global phases only shifts the whole spectrum and Flo-
quet eigenstates are unchanged, the physics is invariant
under global shifts by 2π/T of all Ji’s or hi’s. Combin-
ing the two previous relations, it is enough to study the
(J, h) restricted to [0, π/T ]× [0, π/T ].

The phases were h and J are both small compared to
π/T , the phases will correspond to the undriven phases
as we can do perturbation theory. In particular for h� J

, the Floquet eigenstates will look like eigenstates of Hz

and thus, this corresponds to the MBL SG phase. Simi-
larly, for J � h, the Hamiltonian describes a PM phase.
To understand the phase when h or J are large, i.e. close
to π/T , we can use the relations in Ref. 4. For h close to
π/T , the π/T shift maps the problem to that of small h
but paying the price of an extra Px. The Floquet eigen-
states are thus eigenstates of Px and the PM Floquet
operator: the states odd under Px acquire an π/T shift
in their quasi-energies. This will mean that in finite size,
the quasi-energies will come in pairs such that their dif-
ference is π/T up to exponential (in L) accuracy. Finally,
consider J close to π/T so that the shift implies that UF
now corresponds to the PM phase up to the boundary
terms σz1σzL. In this case, to leading order we can fac-
tor UF in a bulk term and a boundary term of the form
σz1σ

z
Lε
−iT2 (h1σ

x
1+hLσ

x
L) with eigenvalues {+1,+1,−1,−1}.

The last point implies that quasienergies will come in
quadruplets {ε, ε, ε + π, ε + π}. This is only true up to
exponential accuracy for a finite system.

Even though I have only argued the phase diagram
close to the boundaries, more careful studies show that
these are only phases ( first obtained in Ref. [1]) which
can be understood from symmetry considerations show a
simple phase diagram as shown in Fig.2 (See Ref. [2] or
App. A). The PM and 0-SG are essentially the same as
the MBL PM and SG phases of the undriven disordered
Ising chain. The new phases are the 0π-Paramagnet (0π-
PM) and the π-Spin glass (π-SG). Both phases display
spontaneous dTTSB, while only the eigenstates of later
also show long-range order. The 0 or π in front of PM and
SG denote quasi-degeneracies in the spectrum of quasi-
energies mentioned in the previous paragraph.

Away from the phase boundaries, the phases can be
understood in terms of l-bits similarly to the undriven
case. The main difference to the undriven case is that

in the novel phases the Floquet operators have the l-bit
version of the extra boundary terms discussed previously.
This can be summarized by

U
(PM)
F ∼ e−iT H̃PM

U
(0SG)
F ∼ e−iT H̃SG

U
(πSG)
F ∼ P̃xe−iT H̃SG

U0πPM
F ∼ τz1 τzLe−iHPM

(5)

where P̃x =
∏
i τ
x
i .

VII. PHASE TRANSITIONS

Following Ref. [2], the different phase transitions of
the non-interacting case can be understood as a infinite
randomness fixed point (IRFP) of underlying Majorana
chains at 0 and π/T quasienergy. In order to explain
what this means, let’s start with the undriven case with-
out interactions.

The IRFP is obtained by considering a strong disorder
real space renormalization. This renormalization group
(RG) procedure is more easily understood in the Majo-
rana picture as hi and Ji can both be understood as hop-
ping terms tj . The idea of the procedure is that at each
step, there is a j1 such that tj1γj1γj1+1 is the largest term.
The RG procedure then consists of ’integrating out’ γj1
and γj1+1 so that there are new effective couplings for
the remaining DOFs. The final result is that we have
Majorana dimers with different lengths and strengths.
Depending on J ≶ h, most of the dimers will be between
Majoranas of the same side of the unit cell leading to
the possible presence of zero modes. In the case h = J ,
there is no clear winner between the two kinds of bonds
and Ref. [20] showed that in this case the distribution of
effective couplings increase without bond but with zero
mean. This is the IRFP and has a characteristic critical
exponent involving the golden ratio. An alternative way
to understand this transition is by noticing that when
J ≈ h, there are going to be regions where the largest
couplings are bonds and other where the magnetic fields
are largest. By integrating out the couplings inside this
regions, there will be an effective Hamiltonian for the re-
maining degrees of freedom. The transition of the model
can then be understood by the criticality of this emerging
chain of modes at zero energy.

A similar picture still holds in the Floquet system but
should also account couplings flowing towards π/T . An
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important parameter will then be the fraction of cou-
plings (including J and h) near (’flowing towards’) 0,
n0. It is also convenient to define the analogous param-
eter of π/T , nπ = 1 − n0. The know phases PM and
0SG correspond to n0 > nπ, while the new phases cor-
respond to nπ > n0. The transition within the regions
nπ ≶ n0 are tuned by the asymmetry between the Ji
and hi distributions as these dictate whether the end
chain will be mostly condensed domain walls or frozen
spins. The qualitatively new transitions appear when
n0 = nπ = 1

2 . Consider first points away from the mul-
ticritical point (Th = TJ = π/2). There are going to be
regions where most of the couplings flow towards 0 and
others towards π/T . On the boundary of these regions
there are going to be modes at π/T -quasienergy either
from the PM − πSG boundaries or the 0SG − oπPM

boundary (where the zero mode from each region can-
cel each other (σx)2 = 1). These boundaries are called
0π−DW in the language of Ref. [2]. The transitions can
then be understood as the phase transition of the emerg-
ing chain at quasienergy π/T . Finally, the multi-critical
point corresponds to the simultaneous criticality of both
emerging chains. The results were confirmed in Ref. [2]
by calculating the effective central charge by studying the
entanglement entropy at the phase transitions.

Interactions seem to not modify the phase transition
universality class and can be argued by the irrelevance
under RG of short-range interactions in the emergent
chains.

VIII. ABSOLUTE STABILITY OF π-SPIN
GLASS

A natural question is whether the identified phases are
stable if we break the Ising symmetry. Said in other
words, can we go from one phase to another without
going through a phase transition once we allow Ising
symmetry breaking perturbations? Ref. [3] and refer-
ences therein argued (analytically and with numerical
evidence) that only the πSG phase is stable.

The analytical argument was carried using the l-bits
picture previously mentioned: weak perturbations are
expected to be able to be ’factored’ by a unitary such
that there is an emergent Ising symmetry as the system
size goes to infinity[21].

For the numerical check, there are two things that were
proved in Ref. [3]. First, they checked the robustness
of the π-pairing in the spectrum, i.e. the symmetry of

the quasi-spectrum under π/T -shifts. This is done by
perturbing the πSG phase by considering

ŪF = Px exp[−iTHz − iλV ] (6)

V =

L∑
i=1

∑
a∈{x,y,z}

hai σ
a (7)

with T J̄i = 1, TδJi = 0.5 and the symmetry breaking
fields hai taken from uniform distributions but with differ-
ent parameters for each a ∈ {x, y, z} in order to break all
the symmetries of the unitary. The spectral gaps are de-
fined by considering the level spacings ∆i

0 = εi+1−εi and
∆i
π = εi+N/2−εi+N/2−π/T , whereN is the Hilbert space

dimensions. Then the 0 and π spectral gaps are defined as
the log-average over i and disorder of ∆i

0 and ∆i
π. Ref. [3]

found that for all proved system sizes (L ∈ {6, 8, 10, 12})
there is a finite region of λ where ∆π � ∆0 (where the
ration is of order O(10−10)).

The second numeric probe is the dynamics of Floquet
operators under time evolution in T steps. Specifically,
the operators σx,y,z expectations value in product states
of spins pointing randomly on the Bloch sphere show two
large peaks at 0 and π/T frequencies and other smaller
peaks due to the glassiness of the phase that are expected
to decay in the large L and t = nT limits.

IX. FINAL REMARKS

I have review different aspects of the Ising chain driven
by two competing Hamiltonians that ultimately give rise
to two new phases not possible in equilibrium. The main
new ingredient seems to be that allowing time-periodic
Hamiltonians allow to introduce ’symmetry defects’ along
the time direction, that in the studied model correspond
to either the global Px symmetry or the localized Majo-
rana modes. This is an idea that can be generalized using
the mathematical techniques to classify equilibrium topo-
logical phases. In addition to this, there are other models
with a global symmetry G different from Z2 (Ising) that
show stability under small G-symmetry breaking pertur-
bations (e.g. see Ref. [22]).

5



Appendix A: Jordan-Wigner Transformation

The Jordan-Wigner (JW) transformations is a change
of variables between a spin 1

2 system and Majorana
fermions in 1D. This is obtained by defining

γi,A =

∏
j<i

σxj

 (+σzi ) (A1)

γi,B =

∏
j<i

σxj

 (+σyi ). (A2)

so that γI=(i,X) satisfy fermionic canonical commutation
relations

{γI , γJ} = 2δIJ . (A3)

When dealing with periodic boundary conditions there
is a caveat at the boundary as γL+1 6= γ1, but γL+1 =(∏

j σ
x
j

)
γ1.

Some useful expressions are (i < j)

σxi = iγiAγiB ,

σzi σ
z
j = γi,A

 ∏
i≤k<j

σxk

 γjA,

σzi σ
z
i+1 = iγi,Bγi+1,A.

(A4)

1. Hamiltonian in Majorana basis

The most general Hamiltonian being considered is

H =
L−1∑
i=1

Jiσ
z
i σ

z
i+1 +

L∑
i=1

hiσ
x
i

+Kx

L−1∑
i=1

σxi σ
x
i+1 +Kz

L−1∑
i=2

σzi−1σ
z
i+1. (A5)

Using the expressions from the previous section

H =

L−1∑
i=1

iJiγiBγi+1A +

L∑
i=1

hiiγiAγiB

−Kz

L−1∑
i=1

γiAγiBγi+1Aγi+1B (A6)

−Kx

L−1∑
i=2

γi−1BγiAγiBγi+1A

where γi,A/B are Majorana operators localized at site i

with an index A/B that can be though of as a left/right
sublattice index. Written in this way, it is clear that
Ji and hi play the role of hopping amplitudes, with the
former being inter-cell hoppings and the later being intra-
cell hoppings. The terms in the second line are interac-
tions.

2. Ising Duality

Forgetting about subtleties coming from the bound-
ary (or in an infinite open system), we can see that
we can perform an inverse Jordan-Wigner transforma-
tion that combines Majoranas from different unit cells
(γiB , γi+1A ∼ γ̃i+ 1

2A
, γ̃i+ 1

2B
) to write

H =

L−1∑
i=1

Jiσ̃
x
i+ 1

2
+

L∑
i=1

hiσ̃
z
i− 1

2
σ̃zi+ 1

2

+Kx

L−1∑
i=1

σ̃zi− 1
2
σ̃zi+ 3

2

+Kz

L−2∑
i=1

σ̃xi+ 1
2
σ̃xi+ 3

2
.

(A7)

where we implicitly introduce new majorana modes (γ0,B
and γL+1,A) that do not appear in the Hamiltonian but
are needed to define the spin operators.

Therefore, the original Ising chain is dual (up to some
the extra modes) to another Ising chain defined on the
dual lattice where Ji ↔ hi and Kz ↔ Kx.

Applying this duality to the model we studied, we get

UF = UxUz = ŨzŨx = Ũ−1x · ŨF · Ũx. (A8)

Therefore, we establish a symmetry of Fig. 2 under a
reflection in the Th = TJ line: The phases mirrored
under this line should have a relative zero mode and break
or not break the Ising symmetry.

3. 0π-Ising duality

As UF and U†F have the same eigenvectors and opposite
spectrum, we can relate the phase of UF with that of U†F .
I can write

U†F = U−1z · U−1x = Ũ−1x · Ũ−1z , (A9)

so that (J, h) ∼ (−h,−J) up to the extra zero modes [23].
By combining this with the (J, h) −→ (J+π/T, h+π/T )
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transformation of the main text, (J, h) ∼ (π/T−h, π/T−
J) up to a mode with π/T quasienergy (the zero mode

is cancelled). This gives us another symmetry of Fig. 2
under reflection of the line J + h = π/T .
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