Thermoelectric materials: Energy conversion between heat and electricity

Xiao Zhang, Li-Dong Zhao*

School of Materials Science and Engineering, Beihang University, Beijing 100191, China

Received 10 January 2015; revised 19 January 2015; accepted 20 February 2015

Available online 24 April 2015

Abstract

Thermoelectric materials have drawn vast attentions for centuries, because thermoelectric effects enable direct conversion between thermal and electrical energy, thus providing an alternative for power generation and refrigeration. This review summaries the thermoelectric phenomena, applications and parameter relationships. The approaches used for thermoelectric performance enhancement are outlined, including: modifications of electronic band structures and band convergence to enhance Seebeck coefficients; nanostructuring and all-scale hierarchical architecturing to reduce the lattice thermal conductivity. Several promising thermoelectric materials with intrinsically low thermal conductivities are introduced. The low thermal conductivities may arise from large molecular weights, complex crystal structures, liquid like transports or high anharmonicity of chemical bonds. At the end, a discussion of future possible strategies is proposed, aiming at further thermoelectric performance enhancements.

© 2015 The Chinese Ceramic Society. Production and hosting by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Keywords: Thermoelectric; Electrical conductivity; Seebeck coefficient; Thermal conductivity

1. Introduction

Statistical results show that more than 60% of energy is lost in vain worldwide, most in the form of waste heat. High performance thermoelectric (TE) materials that can directly and reversibly convert heat to electrical energy have thus draw growing attentions of governments and research institutes [1]. Thermoelectric system is an environment-friendly energy conversion technology with the advantages of small size, high reliability, no pollutants and feasibility in a wide temperature range. However, the efficiency of thermoelectric devices is not high enough to rival the Carnot efficiency [2,3]. A dimensionless figure of merit (ZT) is defined as a symbol of the thermoelectric performance, $ZT=\sigma^2\alpha/\kappa T$. Conceptually, to obtain a high ZT, both Seebeck coefficient (α) and electrical conductivity (σ) must be large, while thermal conductivity (κ) must be minimized so that the temperature difference producing Seebeck coefficient (α) can be maintained [4,5].

Historically, in 1821, the German scientist Thomas Johann Seebeck (Fig. 1(a)) noticed an interesting experimental result that a compass needle was deflected by a nearby closed cycle jointed by two different metals, with a temperature difference between junctions. This phenomenon is called the Seebeck effect, which can be simply schematized by Fig. 1(b), where an applied temperature difference drives charge carriers in the material (electrons and/or holes) to diffuse from hot side to cold side, resulting in a current flow through the circuit [6]. Fig. 1(c) shows the power generation efficiency as a function of average ZT_{ave}, and the relationship can be given by Refs. [7,8]:

$$\eta_p = \frac{T_h - T_c}{T_h} \left\{ \frac{1}{\sqrt{1 + ZT_{ave} - 1}} \right\} \quad (1)$$

where ZT_{ave} is the average value of both n-type and p-type two legs, the ZT_{ave} per leg is averaged over the temperature dependent ZT curve between T_h and T_c. T_h and T_c are the hot and cold ends temperature, respectively [7,8].
\[ZT_{\text{ave}} = \frac{1}{T_h - T_c} \int_{T_i}^{T_h} ZT \, dT \]

Fig. 1(c) shows that a higher \(ZT_{\text{ave}} \) and a larger temperature difference will produce the higher conversion efficiency. One can see that if \(ZT_{\text{ave}} = 3.0 \) and \(\Delta T = 400 \) K the power generation efficiency \(\eta_p \) can reach 25%, comparable to that of traditional heat engines [7,8]. The Seebeck effect is the thermoelectric power generation model. And in some extreme situations or special occasions, the thermoelectric technology plays an irreplaceable role. The radioisotope thermoelectric generators (RTGs) have long been used as power sources in satellites and space probes, such as Apollo 12, Voyager 1 and Voyager 2, etc. Nowadays, thermoelectric power generation gets increasing application in advanced scientific fields, and the thermal source could be fuels, waste-heat, geothermal energy, solar energy and radioisotope [7,8].

Opposite to the Seebeck effect, the Peltier effect is the presence of heating or cooling at an electrified junction of two different conductors and was named after the French physicist Jean Charles Athanase Peltier (Fig. 1(d)), who discovered it in 1834. As shown in Fig. 1(e), heat is absorbed at the upper junction and rejected at the lower junction when a current is made to flow through the circuit, and the upper end is active cooling [6]. The thermoelectric cooling efficiency \(\eta_c \) can be given by Refs. [7,8]:

\[\eta_c = \frac{T_h}{T_h - T_c} \left[\frac{1}{\sqrt{1 + ZT_{\text{ave}}}} - \frac{1}{T_h / T_c} \right] \]

As illustrated in Fig. 1(f), similar with the thermoelectric power generation, a higher \(ZT_{\text{ave}} \) value will produce a larger thermoelectric cooling efficiency \(\eta_c \). For example, When \(ZT_{\text{ave}} = 3.0, \Delta T = 20 \) K, \(\eta_c \) could reach 6\%. The Peltier effect is the thermoelectric cooling power refrigeration model, which have already been used in some electronic equipments intended for military use. Thermoelectric coolers can also be used to cool computer components to keep temperatures within design limits, or to maintain stable functioning when over-clocking. For optical fiber communication applications, where the wavelength of a laser or a component is highly dependent on temperature, Peltier coolers are used along with a thermistor in a feedback loop to maintain a constant temperature and thereby stabilize the wavelength of the device.

2. Current thermoelectric materials and advanced approaches

To obtain a high \(ZT \), both Seebeck coefficient (\(\alpha \)) and electrical conductivity (\(\sigma \)) must be large, while thermal
conductivity (κ) must be minimized; however, the laws of physics conspire against satisfying this requirement. The Wiedemann–Franz law requires the electronic part of thermal conductivity (κ_e) to be proportional to electrical conductivity (σ), and the Pisarenko relation limits the simultaneous enlargement of α and σ [9]. The complex relationships of these thermoelectric parameters can be summarized as [10]:

\[
\alpha = \frac{8\pi^2 k^2 B}{3e^2 h^2} m^* T \left(\frac{\pi}{3n} \right)^{2/3}
\]

(4)

\[
\sigma = ne\mu = \frac{ne^2 \tau}{m}
\]

(5)

\[
\kappa_{\text{tot}} = \kappa_{\text{lat}} + \kappa_{\text{ele}} = \kappa_{\text{lat}} + L\sigma T
\]

(6)

where k_B is the Boltzmann constant, m^* is the density of states effective mass, h is the Planck constant, n is the carrier concentration, e is per electron charge, μ is the carrier mobility, τ is the relaxation time, κ_{tot} is the total thermal conductivity, κ_{lat} is the lattice thermal conductivity, κ_{ele} is the electronic thermal conductivity, and L is the Lorenz number.

The complex parameter relationships make the approach of tuning carrier concentration alone difficult to enhance ZT. However, over the past few decades, great progress has been made in thermoelectric field encompassing diverse strategies to enhance the power factor and reduce thermal conductivity, promoting the thermoelectrics to its Renaissance era. Fig. 2 summarizes the reported ZT values per publishing years. According to the optimal working temperature, the thermoelectric materials can be divided into three ranges [10]: Bi$_2$Te$_3$-based low-, PbTe-based middle- and SiGe-based high-temperature ranges, with typical temperatures varying from <400 K, 600 K—900 K and >900 K, respectively. To retrospect the history of thermoelectric materials that have been developed for nearly 200 years since the observation of the Seebeck effect in 1821, the development can be divided into three generations according to ZT values [5]. In the first generation, ZT is about 1.0, and the devices can operate at a power conversion efficiency 4%–5% (approximately estimated from the maximum ZT), as shown in the left purple part of Fig. 2. The second period was ignited by size effects and extends to 1990s [11–13], with ZT being pushed to about 1.7 [14], by the introduction of nanostructures; the power conversion efficiency can be expected to be of 11%–15%, as shown in the middle blue part of Fig. 2. The third generation of bulk thermoelectrics has been under development recently, some new concepts and new technologies have pushed ZT to 1.8 [15] and even higher; the predicted device conversion efficiency increases to 15%–20%, as shown in the right yellow part of Fig. 2. The development history in the thermoelectric exhibits a trend of pursuing low-cost and earth-abundant characterizations besides high ZTs > 2.0 [16–19].

As shown in Fig. 2, due to the extraordinary physical and chemical properties, PbTe is one of the most attractive materials, the study of which was extended throughout the history of thermoelectrics [40–42]. For this reason, PbTe system is hereby chosen to introduce the newly developed strategies in order to enhance ZT.

2.1. Band structure engineering to enhance Seebeck coefficient

The first typical example is the Seebeck coefficient enhancement in PbTe by the density-of-states (DOS) distortion through TI doping [24,43,44]. Such a situation can occur when the valence or conduction band of the host semiconductor resonates with the localized impurity energy level. Compared with Na doped PbTe with the same carrier concentration, TI

![Fig. 2: ZT of the current bulk thermoelectric materials as a function of year: the left part indicates the three conventional thermoelectric systems with $ZT < 1.0$ before 1990s, Bi$_2$Te$_3$, PbTe and SiGe; the middle part elucidates that the ZTs were enhanced to about 1.7 by nanostructures (AgPb$_{0.5}$SbTe$_{3.5}$+I [14], nano-Bi$_2$Te$_3$ [20], nano+amorphous-Bi$_2$Te$_3$ [21], nano-SiGe [22], nanostructural PbS [23]) and electronic structure engineering (TI doped PbTe [24], PbTe$_{1-x}$Se$_x$ [15]), modulation doping (SiGe) [25,26]; the right part shows the high performance realized in hierarchical PbTe and promising thermoelectric materials developed recently and characterized by low-cost, earth-abundant, and low thermal conductivity, including panoscopic PbSe [27,28], band alignment PbS [29,30], BiCuSeO [31], Cu$_2$S systems [32,33], SnS [34,35], Cu$_3$Se systems [17,19,36,37], Half-Heusler [38,39], and SnSe [18]. Some materials show the ZTs > 2.0.](image-url)
doped PbTe shows increased effective mass and pronounced higher Seebeck coefficient. The DOS distortion results in a ZT as high as 1.5 at 773 K, which is very impressive by merely introducing Tl elements in PbTe. The conjunction of this new physical principle with the approaches used to lower the thermal conductivity could further enhance ZT in PbTe system, and have been proved equally applicable in other thermoelectric systems, such as Al-doped PbSe, such as Al-doped PbSe [45,46] and In-doped SnTe [47] systems.

Another typical example is the Seebeck coefficient enhancement by tuning the energy offsets between light and heavy valence bands in PbTe. PbTe has a fascinating valence band structure; in addition to the upper light hole band at the L points of the highly symmetric Brillouin zone, there exists a second valence (with a heavy effective mass, thus called heavy hole band) band (Σ) which lies energetically below it [5,15,48,49], as shown in Fig. 3(a). The energy offset between L and Σ band is about 0.15 eV in PbTe system. If the L and Σ band edges move closer in energy the carriers will redistribute between the two valence bands (L and Σ bands) with different effect masses. The overall effective mass can be enhanced through carrier injections from Σ band to L band by a factor of \(N_v^{2/3} \), where \(N_v \) is the number of degenerate valleys, which is 4 for L band and 12 for the Σ band. Specifically, \(m^* = N_v^{2/3} m_v^* \), where \(m_v^* \) is the effective mass of the single valley [48]. The band convergence can be evidenced by the deviation of experimental Seebeck coefficients from calculated Pisarenko line at the carrier concentration > 4 \times 10^{19} \text{ cm}^{-3} \), as shown in Fig. 3(b) [50]. Compositional alloying in the matrix could also result in a decreased energy offsets between L and Σ bands in PbTe. Examples are Mn [51] and Mg [50] alloyed PbTe, where the energy difference between L and Σ bands was reported to decrease with respect to the alloying fractions. With increasing solute fraction of M (M = Mn, Mg), both L and Σ bands lower their energies, but the L band decreases faster than the Σ band, so that the two bands eventually get closer, Fig. 3(a). This type of M solid solution alloying lifts the Seebeck coefficients over Pisarenko line in the entire carrier concentrations range, Fig. 3(b). The Seebeck coefficient enhancement is similar in character to that caused by resonant states in PbTe by Tl doping. Indeed, the Mn and Mg alloying in PbTe produced a high ZT of 1.6 [51] at 700 K and 2.0 [50] at 873 K, respectively. However, this approach is challenged by the deteriorations of carrier mobility, clearly which will need to be settled with future experimentation. The intra matrix band engineering described above has also been successfully applied to other systems such as the PbSe–SrTe [52], Mg2Si–Mg2Sn [53] and the SnTe systems [47,54].

2.2. All-scale hierarchical architectures to reduce thermal conductivity

The thermoelectric performance can be enhanced by decreasing the thermal conductivity. The complex relationships between thermoelectric parameters indicate that the lattice thermal conductivity \(\kappa_{\text{lat}} \) is the only parameter that is independent on carrier concentration. Therefore, reducing lattice thermal conductivity is an effective method to enhance thermoelectric performance. The lattice thermal conductivity can be given by: \(\kappa_{\text{lat}} = 1/3C_vvl \), where the heat capacity (\(C_v \)) and the phonon velocity (\(v \)) are constant, so the lattice thermal conductivity is governed by the phonon mean free path (MFP) \(l \). When the dimension of inclusions/defects is comparable to the MFP, the phonons will be effectively scattered. Acoustic phonons carry most of the heat in a material, and they have a spectrum of wavelengths and mean free paths (MFP) distribution, including short, medium and long wavelength phonons, synergetically contributes to the total thermal conductivity [56–58]. Therefore, all length-scale structures (solid-solution point defects, nano-scale precipitates and grain boundary) corresponding to the broad spectrum of heat-carrying phonons should be the main design principle for the future thermoelectric materials, as shown in Fig. 4(a).

Point defects can be formed by doping or alloying. Their role of reducing the lattice thermal conductivity [59] are generally understood in the Callaway model via the mass difference (mass fluctuations) and the size and the interatomic coupling force differences (strain field fluctuations) between

Fig. 3. (a) Schematic showing the relative energy of the valence bands in PbTe system, with rising solid solution fraction \(M \) (such as Mg [50,55] and Mn [51]). The solid solution alloying within the solubility limit modifies the valence band structure push both L and Σ bands move down but make the two valence bands closer in energy. (b) The Pisarenko relation for PbTe (Na doped PbTe), and the enhancement on Seebeck coefficient at a similar Hall carrier concentration in PbTe due to either resonant doping (Tl) [24] or band convergence at room temperature (Mg [50,55] and Mn [51]).
the impurity atom and the host lattice [60,61]. Nano-inclusions can be obtained by several approaches, including embedded nano-inclusions [62,63], dispersing in situ partially oxidized nanoparticles in matrix [64], and the endotaxial nano-precipitates [23,27,29,50,54,65,66]. A general approach for introducing endotaxial nanostructures in a parent matrix is through nucleation and growth of a second phase, which is required to have a low solubility in the solid state, but complete solubility in the liquid state [23]. To get the polycrystallines, the spark plasma sintering (SPS) is a suitable and effective technology to fabricate highly dense and fine-grained thermoelectric materials [67]. In term of developing scalable materials, there are several effective methods of powder processing, including mechanical alloying (MA) [20,62,68], a rapid melt spinning (MS) [21,69–73], and self-propagating high-temperature synthesis (SHS) [74,75].

An illustrative example for the thermal conductivity reduction is PbTe+2%Na+4%SrTe polycrystalline [16]. The lattice thermal conductivity of PbTe was reduced by ~25% through Na doping; and further reduced by 55% through introducing of nanostructured SrTe; grain boundary contributes to a further significant reduction at high temperatures. The overall thermal conductivity reached as low as ~0.5 W/mK at 915 K. In term of figure of merit ZT, optimal Na doping in p-type PbTe led to a ZT of ~1.1 at 775 K, which was further increased to ~1.7 at 800 K by introducing SrTe nano-precipitates, and eventually to ~2.2 at 915 K for PbTe+2%Na+4%SrTe polycrystalline through additional grain

Fig. 4. All-scale hierarchical architectures and ZT values: (a) hierarchical architectures with all length-scale structures (solid-solution point defects, nano-scale precipitates and grain boundaries) to scatter short, medium and long wavelength phonons, respectively, (b) the ZT values as a function of temperature for the PbTe+2%Na ingot, PbTe+2%Na+4%SrTe ingot, and PbTe+2%Na+4%SrTe polycrystal [16].

Fig. 5. Crystal structure, and thermoelectric properties as a function of temperature of Yb14MnSb11 [77]: (a) Crystal structure, body-centered, I41/acd crystal structure of Yb14MnSb11. The green and purple spheres represent Yb and Sb, respectively. The MnSb4 tetrahedron is shown as a filled red polyhedron. (b) electrical resistivity, (c) Seebeck coefficient, (d) power factor, (e) thermal conductivity, and (f) ZT value. Reprinted (Fig. 5(a)) with permission from (Ref. [61]). Copyright 2006, American Chemical Society.
boundary scattering [16], as shown in Fig. 4(b). These all-scale hierarchical architectures were successfully established and applied to various lead chalcogenides Pb\(_Q\) (\(Q = \text{Te} [50], \text{Se} [27,65], \) and \(\text{S} [29,66]\)).

3. Promising thermoelectric materials with intrinsically low thermal conductivity

To date, diverse advanced approaches to enhance ZT emerged in the last decade including: modifying the band structure [24,43], heavy valence (conduction) band convergence [15,53], quantum confinement effects and electron energy barrier filtering to enhance Seebeck coefficients [12,13]; nanostructuring and all-scale hierarchical architecturing to reduce the lattice thermal conductivity [14,16]; band energy alignment between nano-precipitate/matrix to maintain hole mobility [29,76]. Most of these approaches aim to maintain a high power factor and/or reduce the lattice thermal conductivities. Alternatively, one can seek high performance in thermoelectric materials with intrinsically low thermal conductivity, which may arise from a large molecular weight [77], a complex crystal structure [78], anharmonic [18,79,80], anisotropic bonding [59,81], weak chemical bonding [82], or ion liquid-like transport behavior [36,37], etc.

3.1. Yb\(_{14}\)MnSb\(_{11}\): large molecular weight

Yb\(_{14}\)MnSb\(_{11}\) has a body-centered, \(I\bar{4}/acd\) crystal structure, as shown in Fig. 5(a). The green and purple spheres represent Yb and Sb, respectively, and the filled red polyhedron indicates MnSb\(_4\) tetrahedron [77]. The molecular weight of Yb\(_{14}\)MnSb\(_{11}\) is 3783.088, which is more than ten times higher than that of PbTe (334.8). The electrical resistivity (Fig. 5(b)) increases linearly with temperature and reaches \(\sim 5.4 \times 10^{-3} \, \Omega \cdot \text{cm}\) at 1200 K. The high electrical resistivity corresponds to a low mobility of about 3 cm\(^2/Vs\) that decreases with temperature. The Seebeck coefficient for Yb\(_{14}\)MnSb\(_{11}\) (Fig. 5(c)) reveals a monotonic increase with temperature and reaches a maximum of \(+185 \, \mu V/K\) at 1275 K. The resulting power factor calculated from the electronic properties exhibits a maximum of \(\sim 6.0 \, \mu W/cmK^2\) at 1200 K, as shown in Fig. 5(d). This value is somewhat low compared with the state-of-the-art thermoelectric materials [83]. As shown in Fig. 5(e), the thermal conductivity of Yb\(_{14}\)MnSb\(_{11}\) is very low, ranging from \(\sim 0.7\) to \(0.9 \, \mu W/mK\) from 300 to 1275 K. The low thermal conductivity value is even comparable to a glass, largely owing to the complexity (limiting the phonon mean-free path) and heavy atomic mass (reducing the fraction of atomic vibrational modes that carry heat efficiently) of the crystal. Overall, the ZT for Yb\(_{14}\)MnSb\(_{11}\) (Fig. 5(f)) sharply increases with temperature and reaches a maximum of \(\sim 1.0\) at 1223 K. Considering the low power factor of Yb\(_{14}\)MnSb\(_{11}\), further improvement of the ZT should be possible through carrier concentration optimization [84–86].

3.2. Ag\(_9\)TiTe\(_5\): a complex crystal structure

As shown in Fig. 6(a), Ag\(_9\)TiTe\(_5\) exhibits a complex hexagonal crystal structure with the space group \(R-3\) \(c\). The hexagonal lattice parameters \(a = 1.1431\) nm and \(c = 4.1945\) nm. The unit cell of Ag\(_9\)TiTe\(_5\) is large and extremely complex, containing 12 molecules and 180 atoms [78]. The electrical resistivity of Ag\(_9\)TiTe\(_5\) decreases with temperature across the
whole temperature range, indicating a semiconducting character. The resistivity value at 700 K is $2.63 \times 10^{-2} \ \Omega \cdot \text{cm}$, Fig. 6(b), which is more than an order of magnitude higher than those of state-of-the-art thermoelectric materials. The Seebeck coefficient first decreases with temperature, reaching a minimum at around 650 K, and then increases with temperature up to 700 K. The Seebeck coefficient value of Ag$_9$TlTe$_5$ at 700 K is 319 μV/K, as shown in Fig. 6(c). The maximum power factor of 3.87 μW/cmK2 was obtained at 700 K, Fig. 6(d). Although its power factor is lower than those of state-of-the-art thermoelectric materials, Ag$_9$TlTe$_5$ exhibits a very high ZT value of 1.23 (Fig. 6(f)) at 700 K because of its extremely low thermal conductivity [78], whose value at room temperature is about 0.23 W/mK, only one-fifth of that for pure Bi$_2$Te$_3$ [83]. The temperature dependence of thermal conductivity is rather weak, as shown in Fig. 6(e), resembling a glass-like limit. To explore the reason behind the low thermal conductivity of Ag$_9$TlTe$_5$, the elastic properties were then characterized. The average sound velocity, Young's modulus, and Debye temperature are 1203 ms$^{-1}$, 23.4 GPa, and 120 K, respectively. These values are very low compared with those of state-of-the-art thermoelectric materials [83]. For example, the Debye temperatures for Bi$_2$Te$_3$ and PbTe are 165 K and 160 K, respectively. The low Young's modulus and Debye temperature of Ag$_9$TlTe$_5$ are attributable to its weak interatomic bonding. The above data well satisfied the requirements for a low thermal conductivity: a large molecular weight, a complex crystal structure, nondirectional bonding, and a large number of different atoms per molecule [87].

3.3. Cu$_2$Se: ion liquid-like transport

Copper chalcogenides Cu$_2$Se, in spite of their simple chemical formula, have quite complex atomic arrangements. The Cu–Se system exhibits two distinct phases in the Cu-
deficient region, i.e., the low-temperature \(\alpha \)-phase and the high-temperature \(\beta \)-phase. In both phases, a significant deficiency of Cu are allowed in the chemical stoichiometry of Cu\(_2\)Se [36,37]. For the high-temperature \(\beta \)-phase, Se atoms form a simple face-centered cubic (fcc) structure with the space group \(Fm\bar{3}m \), as shown in Fig. 7(a). The electrical resistivity and Seebeck coefficient of Cu\(_2\)Se are very high in the whole temperature range, as shown in Fig. 7(b) and (c). The resistivity is on the order of \(10^{-2} - 10^{-3} \) \(\Omega \)-cm, and the Seebeck coefficient in the \(\beta \)-phase range of temperatures from 420 K to 1000 K varies between \(+80 \) and \(+300 \) mV/K. Based on the measured electrical resistivity and high Seebeck coefficient, the calculated power factor for the \(\beta \)-phase ranges from 7 to 12 \(\mu \)W/cmK\(^2\), as shown in Fig. 7(d). Cu\(_2\)Se has very low thermal conductivity values (<1.0 W/mK), see Fig. 7(e); the lattice thermal conductivity \(\kappa_{\text{lat}} \) of around 0.4–0.6 W/mK at high temperatures indicates the phonon mean free path is quite small in this binary material. It is very surprising that such low value of \(\kappa_{\text{lat}} \) was realized in a compound with very simple chemical formula, small unit cell and light elements. One possible suggestion is that the low thermal conductivity is largely related with the abnormal heat capacity behaviors over temperature, as shown in the inset of Fig. 7(e) \(\beta \)-Cu\(_2\)Se shows a decreasing \(C_p \) value ranging between 3\(Nk_B \) (in a solid crystal) and 2\(Nk_B \) (in a liquid), which deviates from the expected one at elevating temperature. This abnormal behavior of \(C_p \) reveals an ion liquid-like transport. With the low thermal conductivity, the \(ZT \) of \(\beta \)-Cu\(_2\)Se reached a value ~ 1.5 at 1000 K, as shown in Fig. 7(f). The extraordinarily high \(ZT \) of \(\beta \)-Cu\(_2\)Se demonstrates that reducing the number of modes of heat propagation by using a superionic conductor with a liquid-like substructure could be a general strategy to suppress lattice thermal conductivity. In this sense, this work indicates a new direction for researches and broadens the scope of materials which should be carefully screened as prospective thermoelectric [68].

3.4. Harmonicity and anharmonicity

The perfectly harmonic bonds in one-dimension are schematically illustrated in Fig. 8(a). In perfectly harmonic bonds, the force to which an atom is subjected is proportional to its displacement from equilibrium position, and the proportionality constant is called the spring constant or stiffness. In the anharmonic case, the spring stiffness does not remain constant with increasing atom displacements, which has pronounced consequences when two phonons run into each other [88], as shown in Fig. 8(b). The presence of the first phonon then changes the value of the spring constant seen by the second phonon. The second phonon thus runs into a medium with modified elastic properties, which is more likely to reflect it. Anharmonicity results in enhanced phonon–phonon scattering, which reduces \(\kappa_{\text{lat}} \) without affecting the solid’s electronic properties. Grüneisen parameter \(\gamma \) is used to measure the strength of anharmonicity, which can be given by Ref. [79]:

\[
\gamma = \frac{3 \beta BV_m}{C_v}
\]

(7)

where \(\beta \) is the volume thermal expansion coefficient, \(B \) the isostructural bulk modulus, \(C_v \), the isochoric specific heat per mole, and \(V_m \), the molar volume.
The larger is the Grüneisen parameter γ, the stronger is the phonon scattering. As mentioned above, PbTe system has the extraordinary physical and chemical properties favorable for high thermoelectric performance, one of which is the large Grüneisen parameter γ. PbTe owns a Grüneisen parameter γ about 1.5 [79], which is impressive for a semiconductor. The large γ can be ascribed to the recent discovery that Pb atoms are in fact somewhat displaced off the octahedron center in the rock-salt structure, and that the displacement increases with rising temperature [89]. PbSe shows a lower thermal conductivity than PbTe, since it owns a higher γ value due to a higher C_v. The higher degree of anharmonicity in lattice vibration eventually leads to a lower thermal conductivity in PbSe [90]. In what follows, we would introduce several representative systems with high bonds anharmonicity.

3.4.1. I-V-VI$_2$ semiconductors

Fig. 9(a) shows the crystal structure of cubic rock-salt I-V-VI$_2$ semiconductors [79,91,92], where yellow atoms present Ag/Sb, gray atoms present Te(Se). Both the electrical resistivities and Seebeck coefficients of AgSbTe$_2$ [93] and AgSbSe$_2$ [91] are high in the temperature ranging from 300 K to 700 K, as shown in Fig. 9(b) and (c). AgSbTe$_2$ shows the Seebeck coefficients range from 200 to 250 μV/K while AgSbSe$_2$ exhibits much larger values of 300–500 μV/K. The maximal power factors are 10 μW/cmK2 and 3 μW/cmK2 for AgSbTe$_2$ and AgSbSe$_2$, respectively, as shown in Fig. 9(d). The thermal conductivities of the two I-V-VI$_2$ semiconductors are impressively low and remain a value of about 0.3 W/mK throughout the entire temperature range, Fig. 9(e). The low thermal conductivity values contribute high ZT values of 1.6 and 0.4 at 700 K for AgSbTe$_2$ [93] and AgSbSe$_2$ [91], respectively, Fig. 9(f). The low thermal conductivity values come from the strong anharmonicity of their chemical bonds, namely, the Grüneisen parameters γ are 2.05 and 3.5 for AgSbTe$_2$ and AgSbSe$_2$, respectively [92]. The high Grüneisen parameters of I-V-VI$_2$ semiconductors may originate from the presence of lone-pair electrons in the sp^3-hybridized bonding orbitals [94,95]. These non-bonded electron pair of Sb gives rise to electron clouds surrounding the Sb atoms that cause nonlinear repulsive forces which is manifested as bonds anharmonicity [92].

3.4.2. BiCuSeO oxyselenides

BiCuSeO oxyselenides have recently received ever-increasing attentions and have been extensively studied as very promising thermoelectric materials [81]. The ZT of BiCuSeO system was significantly increased from 0.5 to 1.4 in the past three years, enable BiCuSeO oxyselenides to become robust candidates for energy conversion applications [31,96]. As shown in Fig. 10(a), BiCuSeO crystallizes in a layered ZrCuSiAs structure, with the tetragonal unit cell $a = b = 3.9273$ Å, $c = 8.9293$ Å, $Z = 2$, and the space group $P4/nmm$. BiCuSeO exhibits a two-dimensional layered structure, composed of alternatively stacking of fluorite-like Bi$_2$O$_2$ layers and Cu$_2$Se$_2$ layers along c-axis [97]. The combination of low electrical conductivity and large Seebeck coefficient produce a moderate power factor of undoped BiCuSeO, as shown in Fig. 10(b), (c) and 10(d). Considering the intrinsically low thermal conductivity of BiCuSeO (Fig. 10(e)), a practical way to enhance ZT is to increase its electrical transport properties, i.e., the carrier concentration and carrier mobility [81,98,99]. The modulation doping, widely used in a 2-dimension film devices to increase carrier mobilities, is very promising to improve the thermoelectric performance for compounds with intrinsically low thermal conductivities; indeed, the introduction of modulation doping in BiCuSeO increases its carrier mobility from 2 to 4 cm2/Vs and decouples the power factor [98]. As shown in Fig. 10(f), the figure of merit ZT was increased from 1.1 to 1.4 at 923 K in BiCuSeO system by modulation doping. The modulation approach prompts the carrier redistribution between the regions with contrasting carrier mobilities, thus facilitating the overall electrical transport. The heterostructures of modulation doped sample make charge carriers preferentially transport in the low carrier concentration area, which increases carrier mobility by a factor of two while maintains the similar overall carrier concentration as that in the uniformly doped sample [25,26]. The intrinsically low thermal conductivity of BiCuSeO is the main reason for the promising thermoelectric performance in BiCuSeO system, namely, the thermal conductivities of BiCuSeO remain about 0.3–0.5 W/mK throughout the entire temperature range. The elastic properties indicate a Grüneisen parameter of 1.5 in BiCuSeO system [59], which is impressive for a conductor with moderate electrical transport properties. As in the same V group, Bi owns a larger atom radius than that of Sb, thus it is reasonable to expect that the valence shell and electron clouds surrounding the Bi atoms would be larger than that of Sb [59]. Similarly low lattice thermal conductivity should be observed in the Bi-based compounds, in which the Bi ion formally adopts the trivalent state as Sb in AgSbTe$_2$ [79]. The connection between the nature of the bonding and the Grüneisen parameter (γ) has been explored in detail theoretically by Huang et al., who clearly show the effect of large electron clouds on anharmonicity [100]. In principle, the lone-pair electrons of Bi possibly lead to more strong bond anharmonicity [92].

3.4.3. SnSe single crystals

SnSe adopts a layered orthorhombic crystal structure at room temperature, which can be derived from a three dimensional distortion of the NaCl rock-salt structure [101], as shown in Fig. 11(a). Two-atom-thick SnSe slabs (along the b-c plane) with strong Sn–Se in-plane bonding are linked with weaker Sn–Se bonding along the a-direction. The structure contains highly distorted SnSe$_2$ coordination polyhedron with three short and four very long Sn–Se bonds and a lone pair of the Sn$^{2+}$ atoms sterically accommodated in between the four long Sn–Se bonds [18]. The two-atom-thick SnSe slabs are corrugated creating a zig-zag accordion-like projection along the b-axis. Compared with polycrystalline SnSe [102,103], SnSe single crystals exhibit super-high carrier mobilities,
however, the SnSe crystals still show the moderate electrical transport properties, as shown in Fig. 11(b), (c) and (d). Interestingly, SnSe shows a very low thermal conductivity, Fig. 11(e), which is even comparable to these I-V-I\textsubscript{2} semiconductors [79]. The physics of SnSe is fascinating, which is due to the high anharmonicity of its chemical bonds. The average Grüneisen parameters of SnSe along the axis of \(a\), \(b\), \(c\) are 4.1, 2.1, 2.3, respectively [18]. The anomalously high
Grüneisen parameter of SnSe is a reflection of its unique crystal structure, which contains very distorted SnSe₇ polyhedra (due to the lone pair of Sn²⁺), a zig-zag accordion-like geometry of slabs in the b-c plane. In each SnSe₇ polyhedra, one Sn atom is surrounded by seven Se atoms, with four long Sn-Se bonds and three short ones, resulting in unbalanced forces around the Sn atom. This implies a soft lattice, and if this lattice were mechanically stressed along the b and c directions, the Sn-Se bond length would not change directly, but instead the zig-zag geometry would be deformed like a retractable spring or an accordion. In addition, along the a direction, the weaker bonding between SnSe slabs provides a good stress buffer or ‘cushion’, thus dissipating phonon transport laterally. The thermal conductivity of SnSe along b axis is 0.70 W/mK at room temperature and decreases to 0.34 W/mK at 973 K (Fig. 11(e)), which results in a high ZT of 2.6 at 973 K, Fig. 11(f). Therefore, the high anharmonicity of chemical bonds may well be behind the high ZT of SnSe, an idea that stimulates further experimental and theoretical work. As an analog of SnSe, SnS also has been paid extensive attentions. Parker and Singh calculated the band structure of SnS using the first-principles and deduced that SnS is an indirect bandgap semiconductor with a predicted high Seebeck coefficient and a low thermal conductivity [104]. They suggested that p-type SnS is a potential thermoelectric material if it can be suitably doped. The newly published calculation work by Bera et al. about SnS also supports the potentially good thermoelectric properties of SnS [105]. Experimentally, Tan et al. reported that the low thermal conductivity falls below 0.5 W/mK at 873 K and leads to a high ZT of 0.6 in Ag doped polycrystalline SnS, pointing out that the environmentally friendly SnS is indeed a promising candidate for thermoelectric applications [34].

Owing to the wide scope of promising thermoelectric materials characterized by intrinsically low thermal conductivities, we would not list them one by one in this short summary. Interested readers are encouraged to refer to these typical examples, including CdSb with anisotropic multicenter bonding [106], diamond-like tetrahedral compounds [107–112], natural minerals [113–118], zintl phase with complex structure [119–126], bismuth sulfides [127–133], and others [134–136].

4. Summary and outlook

Thermoelectric materials are environmentally friendly for power generation and refrigeration, thus providing a solution for energy crisis and pollution; however, the thermoelectric conversion efficiency is low and mainly limited by the performance of thermoelectric materials. New concepts and technologies were applied recently to enhance ZT, but accompanied difficulties need to be solved. For example, DOS distortion and band convergence could enlarge carrier effective mass and the Seebeck coefficient, but also result in the deterioration of carrier mobility. Nanostructures is an effective approach to reduce the lattice thermal conductivity but also cause a stronger charge carrier scattering. Thermoelectric materials with intrinsically low thermal conductivity deemed promising are facing the problem of poor electrical transport properties. Last but not the least, there is still a long way between high thermoelectric performance and high thermoelectric conversion efficiency. Building a device that could reach the theoretical efficiency is not a trivial pursuit, it is a huge development project by itself considering the tremendous practical challenges, including good thermal isolation of the device, suitable low resistance hot side and cold side metal contacts, and optimizing assembly of modules, etc. The development of thermoelectric materials and devices needs the connected efforts involving physicists, chemists, materials scientists, and theory scientists.

Acknowledgments

The work carried out in US was supported in part by a grant DOE-EERE/NSF (CBET-1048728), the Revolutionary Materials for Solid State Energy Conversion, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, and Office of Basic Energy Sciences under Award Number DE-SC0001054. We thank Professors M. G. Kanatzidis, V. P. Dravid, C. Uher, C. Wolverton, D. N. Seidman, T. P. Hogan, J. P. Heremans, E. D. Case, N. Dragoe, D. Berardan, C.-W. Nan, J.-F. Li, Y. H. Lin, J. Q. He, W. Cai, J. H. Sui, Y. L. Pei, E. Amzallag, Y. Liu, and W. Xu for plentiful discussions and fruitful collaborations. This work was also supported by the “Zhuoyue” program of Beihang University. Of course most of all, we are grateful to the numerous dedicated graduate students and postdoctoral fellows who have contributed to our thermoelectric research efforts. Their names appear in the various publications cited in this article.

References

Zhong B, Zhang Y, Li WQ, Chen ZR, Cui JY, Li W, et al. High superconductor conduction arising from aligned large lamellae and large figure of merit in bulk Cu$_{0.6}$Al$_{0.4}$Se. Appl Phys Lett 2014;105.

[63] Xiong Z, Chen XY, Zhao XY, Bai SQ, Huang XY, Chen LD. Effects of nano-TiO2 dispersion on the thermoelectric properties of filled-skutterudite Bi0.75Co0.5Sb1.52. Solid State Sci 2009;11:1612–6.

Xiao Zhang is a doctoral research fellow in the School of Materials Science and Engineering at Beihang University, China. She received her Bachelor of Engineering degree in metallurgy from the University of Science and Technology Beijing, China, in 2013. She started her doctoral research as a member of Li-Dong Zhao's group in 2014. Her main research interests focus on the fabrication and properties of thermoelectric materials.

Li-Dong Zhao is currently associate professor of Beihang University, China. He received his B.E. and M.E. Degrees in Material Science from the Liaoning Technical University and his Ph.D. Degree in Material Science from the University of Science and Technology Beijing, China in 2009. He was post-doctoral research fellow in the LEMHE-ICMIMO (CNRS-UMR 8182) at the University of Paris-Sud from 2009 to 2011, and continued a postdoctoral research fellow in Mercouri G. Kanatzidis group in the Department of Chemistry at the Northwestern University from 2011 to 2014. His research interests include the thermoelectric materials, superconductors and thermal barrier coatings.