Objectives

The goals of this project are as follows:

a. To synthesize well ordered crystalline mesoporous transition metal oxide (MTMO) materials with monomodal uniform pore sizes.

b. To prepare and characterize ordered mesoporous thin films.

c. To optimize catalytic activity, selectivity, and stability in oxidation catalysis using amorphous porous oxides and crystalline microporous and mesoporous materials.

d. To investigate the role of mesoporous materials in battery systems.

e. To develop novel in situ characterization methods for syntheses, selective oxidations, and battery studies.

Technical Barriers

The technical barriers in this project include synthesis of catalysts and obtaining excellent catalytic yields and stabilities. The synthesis barriers are related to the generic preparation of metal and nonmetal oxide mesoporous systems. Some materials are more difficult to make than others. Right now some are not able to be made. The catalysis barriers involve optimizing the pore size of the catalysts, optimizing active sites, and understanding factors that give stability to the systems.

Abstract

This project concerns the synthesis of well-ordered crystalline mesoporous transition metal oxide (MTMO) materials with monomodal uniform pore sizes. Characterization of the physical and chemical properties of these materials is being done with a variety of methods. Several catalytic reactions are being studied such as photo-assisted catalytic water splitting, catalytic coupling of diamine and hydroxyketones, quinoxaline formation, selective catalytic oxidation of adamantane, and three component coupling Hantzsch reactions. In addition, such materials are being studied in battery applications.

Progress Report

Sub Topic 1: Synthesis of Mesoporous Materials.

Research in the area of synthesis of microporous and mesoporous materials is ongoing. Unique University of Connecticut (UCT) type metal oxide materials have been prepared that have crystalline walls, monomodal mesopore size distributions, and high thermal stabilities. These materials are under development through a licensing agreement. In addition, several microporous materials have been prepared that are being studied in a variety of catalytic reactions like photo-assisted catalytic oxidation of water and several selective and total oxidation reactions. Activities of these systems are often controlled by the amount of defects, especially oxygen ion vacancies, as well as dopants. Another emphasis has been on the activation of CO₂ to produce useful chemicals and fuels by electrochemical methods. Another active area has been studies of metal oxide and mixed metal oxides with the control of particle size and morphology and their influence on catalytic properties.

Sub Topic 2: Photoassisted Water Splitting with Porous Metal Oxides.

Water oxidation is the bottleneck in artificial photosynthetic systems that aim to split water into hydrogen and oxygen. However, water oxidation occurs readily in plants, catalyzed by the Mn₄O₄Ca manganese cluster. Manganese minerals are ubiquitous in nature displaying layered and tunnel structures. In our studies, mixed valent porous amorphous manganese oxides (AMO), along with cryptomelane type tunnel manganese oxides (OMS-2) and layered birnessite (OL-1) have been used as water oxidation...
catalysts. Significantly higher turnovers were obtained with AMO (290 mmol O₂/mol Mn) compared to tunnel structure OMS-2 (110 mmol O₂/mol Mn) and layered structure OL-1 (27 mmol O₂/mol Mn) in water oxidation tests with Ce⁴⁺. Oxygen evolution was also confirmed under photochemical conditions using [Ru(bpy)₃]²⁺ as a photosensitizer and persulfate as a sacrificial agent. The differences in catalytic activity among these catalysts have been probed using X-ray diffraction, transmission electron microscopy, Raman and Fourier transform infrared (FTIR) spectroscopy, average oxidation state, and compositional analyses. Comparison of AMO against prominent manganese catalysts described in literature shows AMO provided the highest turnover numbers. AMO catalyst was also reusable after regeneration. O-18 labeling studies proved that water was the source of dioxygen and IR proved the structural stability of AMO after reaction. AMO is related to hexagonal birnessites such as layered biogenic manganese oxides or H⁺-birnessite that have cation vacancies in the MnO₂ sheets rather than completely filled Mn³⁺/Mn⁴⁺ sheets, and this is influential in catalytic activity.

Sub Topic Hydrocarbon Oxidations.

A representative study of catalytic oxidations involves the bi-modification in situ oxidation at interfaces (IOI) coupled with an ion-exchange synthesis method that has produced mesoporous silicon oxides (MPS) templates. Manganese oxide was formed at the internal surface of the MPS template by IOI. In this IOI method, high valent oxo-anions of Mn (MnO₄⁻) were used for the selective oxidation of polyethyleneoxide (PEO) groups of Pluronic (PEO₉PPO₇₀PEO₉) surfactant and formed manganese oxide at the organic-inorganic (corona) interface. The oxide formation was restricted at the corona interface by a positively charged CTA⁺ head group of the cationic surfactant CTABr. The second modification of the MPS template was done by introducing promoter cations (K⁺ and Cs⁺) or H⁺ using ion-exchange reactions between the cations and CTA⁺. The synthesized bi-modified MPS-Mn-X preserved the advantages of the MPS template such as having highly ordered mesopore structures, high surface areas, and regular-cylindrical mesopores. The synthesized bi-modified MPS-Mn-X samples were tested for catalytic total oxidation of toluene under oxygen deficient conditions. The bi-modified MPS-Mn-X catalysts exhibited higher performance, selectivity, and stability compared to the singly modified MPS-Mn catalysts. The higher performance of the bi-modified MPS-Mn-X catalysts in catalytic oxidation of toluene (Figure 2) is attributed to creation of more active Mn³⁺ sites on the catalyst surfaces by the promoter ions.

A different strategy to create selective oxidation catalyst has involved use of ultrasonic cavitation in the synthesis of...
novel materials. A rapid, direct sonochemical method was successfully developed to synthesize cryptomelane-type manganese octahedral molecular sieve (OMS-2) materials. Very high surface area of $288 \pm 1 \text{ m}^2/\text{g}$ and small particle sizes in the range of 1−7 nm were produced under nonthermal conditions. No further processing such as calcination was needed to obtain the pure cryptomelane phase. A co-solvent system was utilized to reduce the reaction time and to obtain higher surface areas. Reaction time was reduced by 50% using water/acetone mixed phase solvent systems. The cryptomelane phase was obtained with 5% acetone after 2 h of sonication at ambient temperature. Reaction time, temperature, and acetone concentration were identified as the most important parameters in the formation of the pure cryptomelane phase. OMS materials synthesized using the above-mentioned method were characterized by X-ray diffraction, nitrogen sorption, scanning electron microscopy, transmission electron microscopy, and Fourier transformation infrared spectroscopy. OMS-2 materials synthesized using sonochemical methods possess greater amounts of defects and hence show excellent catalytic performances for oxidation of benzyl alcohol as compared to OMS-2 synthesized using reflux methods and commercial MnO_2. Surface areas and particle sizes are shown in Table 1. Table 2 shows some of the catalytic results for selective oxidation of toluene.

Future Directions

Future directions of this project include synthesis of new mesoporous materials that are difficult to make including some transition metal systems, nonmetal oxide systems, mixed metal systems, and doped Mesoporous materials. Characterization studies include determination of fundamental properties of these systems and using such information as feedback to the syntheses to make better materials as regards purity, controlled structures, and controlled compositions. Catalytic studies will involve optimization of selectivities and activities in the reactions described above.

Publication list (including patents) acknowledging the DOE grant or contract

