

International Atomic Energy Agency

INDC (NDS) -376 Distr.: G+SQ

INTERNATIONAL NUCLEAR DATA COMMITTEE

HANDBOOK

OF

NUCLEAR DATA FOR SAFEGUARDS

N. Kocherov, M. Lammer, O. Schwerer

Nuclear Data Section International Atomic Energy Agency Vienna, Austria

December 1997

IAEA NUCLEAR DATA SECTION, WAGRAMERSTRASSE 5, A-1400 VIENNA

29 - 15

Ľ

Printed by the IAEA in Vienna February 1998 •

.

-

INDC (NDS) -376 Distr.: G+SQ

HANDBOOK

OF

NUCLEAR DATA FOR SAFEGUARDS

N. Kocherov, M. Lammer, O. Schwerer

Nuclear Data Section International Atomic Energy Agency Vienna, Austria

December 1997

ABSTRACT

This handbook contains nuclear data needed by safeguards users for their work. It was initiated by an IAEA Working Group. The contents were defined by the replies to a questionnaire sent to safeguards specialists, and restricted by the availability of evaluated nuclear data. This revised edition was updated after review of the preliminary issue by safeguards and nuclear data experts and when updates of nuclear data libraries were released.

The handbook contains the following basic nuclear data:

actinides: nuclear decay data thermal neutron cross sections and resonance integrals prompt neutron data delayed neutron data fission products: nuclear data

thermal neutron capture cross sections and resonance integrals

fission product yields

TABLE OF CONTENTS

Page

Abstract .	
Foreword .	
Introductio	n 5
Section A:	Actinide Nuclear Data
A-1:	Half-lives and decay branching fractions
A-2:	Alpha energies and emission probabilities 10
A-3:	Gamma ray energies and emission probabilities
A-4:	X-ray energies and intensities
A-5:	Thermal neutron cross-sections, resonance integrals
	and related parameters
A-6:	Average number of neutrons emitted per fission $(\bar{\nu})$ 27
A-7:	Prompt neutron multiplicity distributions $P(v)$
A-8:	Delayed neutron six-group parameters
A -0.	
Section B:	Fission product nuclear data
B-1:	Half-lives and decay branching fractions
B-2:	Gamma ray energies and emission probabilities
B-3:	Thermal neutron capture cross sections and
рJ.	resonance integrals
Section C:	Fission product yields
C-1:	Chain yields and selected cumulative yields
C-2:	Selected independent fission product yields

FOREWORD

This handbook was initiated by an IAEA working group, and the contents were defined by the replies to a quiestionnaire sent to safeguards experts, as outlined in the preliminary edition (INDC(NDS)-248, June 1991; see in particular Appendix A). The preliminary edition of the handbook was distributed to safeguards and nuclear (and other) data specialists for review.

The replies and comments on the preliminary edition received from experts did not contain major changes or suggestions for new sources of nuclear and other data. Therefore we waited with the update of the handbook until revisions and updates of the major data files and other sources of nuclear data became available.

This edition contains no additional tables. The data have been revised in accordance with suggestions and comments received from experts and the latest available nuclear data. Again, each set of tables is preceded by explanations, information on the data selection, the sources of data used and the availability of complete data files. The Handbook is also available in a PC version, which was used for updating the handbook, and which can be obtained on diskette in a slightly different format from the Nuclear Data Section (see introduction for the address).

Acknowledgement

We would like to thank S. Aung, M.M. Seits and M. O'Connell, who have helped to produce the preliminary as well as the final version of the handbook, and G. Pospischil who has written the PC code for the handbook on diskette.

Contact

Scientists who wish to be included in the distribution list for this handbook, should contact M. Lammer at the address given below. Then they will also automatically receive all later revisions and amendments to the handbook. Any mistakes found, comments or suggestions for additions should also be communicated to this address.

M. Lammer Nuclear Data Section International Atomic Energy Agency P.O. Box 100 A-1400 Vienna (Austria)

INTRODUCTION

This handbook contains recommended values of nuclear data needed for the development and application of safeguards nuclear materials accounting techniques. We have included only those data that were requested by safeguards users and which were readily available to us. The data given are grouped in 3 sections: **Section A** contains decay data, thermal neutron cross section data, resonance integrals and data on neutron emission in fission for actinide isotopes. **Section B** contains decay data and thermal neutron cross section data of fission product nuclides. **Section C** contains fission product yield data.

We have used the following criteria for selecting the data for the handbook: When available, we have generally given preference to data recommended by international committees or working groups. When such data were not available or superseded by more recent values, generally available data files were used. When different values were found in different data files, we have given preference to data with uncertainties, or to the most recent suitable values. In the case of fission yield data, a group of specialists recommended not to give a single "best" data set; considering the different existing views on data evaluation methods in this case, two data sets have been included.

Introductory pages to the data tables give further explanations, arguments for the selection of the recommended values (special remarks are given in footnotes), references of the sources of data and information on the availability of larger or complete data sets that are not included in the handbook.

Users of this handbook who wish to receive complete data files, can either request them on magnetic tape or PC diskette from one of the four regional Nuclear Data Centres, or use their on-line services for direct retrieval of some of the data files. Further information can be obtained from the Nuclear Data Centres (see their addresses below).

The handbook is also available as a PC version 'SGNucDat' from the IAEA Nuclear Data Section (see address below) together with guidelines for its use. It can be used to display the data contained in the handbook, and to perform data searches, selections and different sortings, on a PC or laptop.

For USA and Canada:

National Nuclear Data Center Brookhaven National Laboratory P.O. Box 5000 Upton, N.Y. 11973-5000 USA INTERNET: SERVICES@BNL.GOV

For former USSR countries:

Centr po Jadernym Dannym Fiziko-Energeticheskij Institut Ploschad Bondarenko 249020 Obninsk, Kaluga Region RUSSIA INTERNET: MANOKHIN@CJD.OBNINSK.SU For other OECD countries:

NEA Data Bank Le Seine Saint-Germain 12 Blvd. des Isles F-92130 Issy-les-Moulineaux FRANCE INTERNET: NEA@NEA.FR

For all other countries:

IAEA Nuclear Data Section P.O. Box 100 A-1400 Vienna AUSTRIA INTERNET: SERVICES@IAEAND.IAEA.OR.AT

SECTION A: ACTINIDE NUCLEAR DATA

A-1: Half-lives and decay branching fractions

Description of table entries:

decay mode:	α β- ec	alpha decay beta decay electron capture		IT SF T	isomeric transition spontaneous fission total half-life
units:	s m h	second minute hour	d Y	day year :	= 365.2422 days
rel err:	relat	ive 10 uncertainty	(in %)	

branching: given for each decay mode (should sum up to 100%)

exponents: read E±n as $10^{\pm n}$

Source of data:

The tabulated data have been extracted from a data set recommended by participants of an IAEA Co-ordinated Research Programme (CRP). The complete data set is published in: IAEA Technical Report Series No. 261 (STI/DOC/10/261), pp.154-159 (1986).

The data were revised in October 1997. Updated values of half-lives and branching ratios were taken from the ENSDF file, revision of May 1997, and the compilation by R.B. Firestone and V.S.Shirley (Ed.) "Table of Isotopes", 8th edition, New York, J.Wiley & Sons, Inc., 1996.

nuclide	decay mode	units	half-life value	rel err	branching (percent/decay)
81-T1-208	ß –	m	(3.053 ± 0.004) E	E+00 (0.13)	
82-Pb-212	ß –	h	(1.064 ± 0.001) E	E+01 (0.09)	*)
83-Bi-212	τ α β-	m m m	(6.055 ± 0.006) E (1.685 ± 0.003) E (9.452 ± 0.013) E	E+02 (0.18)	35.94 ± 0.06 64.06 ± 0.06
86-Rn-220	α	s	(5.56 ± 0.01) E	5+01 (0.18)	
87-Fr-221	α	m	(4.9 ± 0.2) E	E+00 (4.1)	
88-Ra-224	α	d	(3.66 ± 0.04) E	2+00 (1.1)	
88-Ra-225	ß	d	(1.49 ± 0.02) E	E+01 (1.4)	
88-Ra-226	α	У	(1.600 ± 0.007) E	2+03 (0.44)	
88-Ra-228	ß-	У	(5.75 ± 0.03) E	E+00 (0.52)	
89-Ac-225	α	d	(1.00 ± 0.01) E	C+01 (1.0)	
89-Ac-227	т α ß-	У У У	(2.177 ± 0.003) E (1.578 ± 0.011) E (2.207 ± 0.003) E	C+03 (0.7)	1.38 ± 0.01 98.62 ± 0.01

Table A-1

nuclide	decay mode	units	half-life value		rel err	branching (percent/decay)
89-Ac-228	ß-	h	(6.15 ± 0.02) E	+00	(0.33)	
90-Th-228	α	У	(1.912 ± 0.002) E	+00	(0.1)	
90-Th-229	α	У	(7.34 ± 0.16) E	+03	(2.2)	
90-Th-230	a SF	У У	(7.54 ± 0.03) E 1.98 E+18	+04	(0.4)	3.8 E-12
90-Th-231	ß-	h	(2.552 ± 0.001) E	+01	(0.04)	
90-Th-232	α SF	У У	(1.405 ± 0.006) E >7.8 E+20	+10	(0.43)	<1.8 E-09
90-Th-233	-£1	m	(2.23 ± 0.01) E	+01	(0.45)	
90-Th-234	ß-	d	(2.410 ± 0.003) E	+01	(0.12)	
91-Pa-231	α SF	У У	(3.276 ± 0.011) E >2.05 E+17	+04	(0.34)	<1.6 E-11
91-Pa-233	ß-	d	(2.697 ± 0.002) E	+01	(0.37)	
91-Pa-234	– £۱	h	(6.70 ± 0.05) E	+00	(0.75)	
91-Pa-234m	ß- ІТ	m h		+00 +01	(2.6) (10.)	99.84 ± 0.04 0.16 ± 0.04
92-U -232	a SF	У У		+01 +13	(0.72) (80.)	(0.9 ± 0.7) E-10
92-U -233	α SF	У У	(1.592 ± 0.002) E >2.7 E+17	+05	(0.13)	<0.59 E-10
92-U -234	a SF	У У	(2.457 ± 0.003) E (1.50 ± 0.08) E		(0.12) { 5.6)	(1.64 ± 0.02) E-0
92-U - 235	α SF	У У	(7.038 ± 0.005) E (1.01 ± 2.8) E		(0.1) (30.)	(7.0 ± 0.21) E-0
92-U -235m	IT	m	(2.6 ± 0.2) E	+01	(7.7)	
92-U -236	α SF	у У	(2.342 ± 0.003) E (2.43 ± 0.07) E		(0.13) (2.9)	(9.64 ± 0.03) E-0
92-U -237	ß-	d	(6.75 ± 0.01) E	+00	(0.15)	
92-U -238	α SF	У У	(4.468 ± 0.005) E (8.2 ± 0.1) E		(0.11) (1.2)	(5.45 ± 0.07) E-0
92-U -239	ß-	m	(2.347 ± 0.005) E	+01	(0.21)	
93-Np-236	Т ß- ес	y y y		+06	(10.) (20.) (2.4)	12.5 ± 0.5 87.5 ± 0.5
93-Np-236m	Т ß- ес	h h h	(2.25 ± 0.04) E (4.69 ± 0.13) E	+01 +01	(1.8) (2.8) (2.5)	48. \pm 1. 52. \pm 1.
93-Np-237	α SF	у У	(2.14 ± 0.01) E >1. E+18		(0.47)	<2. E-10
93-Np-239	ß-	d	(2.355 ± 0.004) E	+00	(0.17)	
9 4-P u-236	α SF	у У	(2.851 ± 0.008) E (2.081 ± 0.6) E		(3.5) (20.)	$(1.37 \pm 0.07) = -07$

nuclide	decay mode	units	half-life value	rel err	branching (percent/decay)
94-Pu-238	α SF	У У	(8.77 ± 0.03) E+01 (4.7 ± 0.2) E+10	(0.34) (4.3)	(1.85 ± 0.04) E-07
94-Pu-239	α SF	У У	(2.411 ± 0.003) E+04 8.04 E+15	(0.12)	(3.0 ± 0.8) E-10
94-Pu-240	α SF	У У	(6.563 ± 0.007) E+03 (1.16 ± 0.04) E+11	(0.11) (3.5)	(5.75 ± 0.05) E-06
94-Pu-241	β- α	У У	(1.435 ± 0.01) E+01 (6.00 ± 0.05) E+05	(0.7) (0.83)	(2.45 ± 0.02) E-03
94-Pu-242	α SF	У У	(3.735 ± 0.011) E+05 (6.8 ± 0.1) E+10	(0.29) (1.5)	(5.54 ± 0.06) E-04
94-Pu-243	ß-	h	(4.956 ± 0.003) E+00	(0.06)	
94-Pu-244	α SF	У У	(8.00 ± 0.09) E+07 (6.7 ± 0.3) E+10	(1.1) (4.5)	99.879 \pm 0.004 0.121 \pm 0.004
9 4- Pu-245	ß –	h	(1.05 ± 0.01) E+01	(0.95)	
94-Pu-246	– £۱	đ	(1.085 ± 0.002) E+01	(0.18)	
95-Am-240	ec α	h y	(5.08 ± 0.03) E+01 (3.0 ± 1.1) E+03	(0.59) (40.)	(1.9 ± 0.7) E-04
95-Am-241	α SF	у У	$(4.327 \pm 0.005) E+02$ $(1.00 \pm 0.024) E+14$	(0.12) (2.1)	(4.3 ± 0.18) E-10
95-Am-242	Т ß- ес	h h h	$(1.602 \pm 0.002) E+01$ $(1.937 \pm 0.007) E+01$ $(9.26 \pm 0.16) E+01$	(0.12) (0.36) (1.7)	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
95-Am-242m	IT α SF	y y y	(1.41 ± 0.02) E+02 (3.11 ± 0.05) E+04 >3.0 E+12	(1.4) (1.6) (40.)	99.541 ± 0.0012 0.459 ± 0.0012 <4.7 E-9
95-Am-243	a SF	У У	$(7.370 \pm 0.015) E+03$ $(2.0 \pm 0.3) E+13$	(0.2) (20.)	(3.7 ± 0.9) E-09
96-Cm-242	a SF	d Y	(1.629 ± 0.002) E+02 (7.05 ± 0.14) E+06	(0.04) (2.0)	(6.37 ± 0.018) E-06
96-Cm-243	Τ α ec SF	У У У У	(2.85 ± 0.02) E+01 (2.86 ± 0.02) E+01 (1.19 ± 0.15) E+04 5.37 E+11	(0.7) (0.7) (10.)	99.71 ± 0.03 0.29 ± 0.03 (5.3 ± 0.9) E-09
96-Cm-244	α SF	У У	(1.810 ± 0.002) E+01 (1.320 ± 0.007) E+07	(0.11) (0.52)	(1.371 ± 0.002) E-04
98-Cf-252	Τ α SF	У У У	$(2.645 \pm 0.008) E+00$ $(2.73 \pm 0.01) E+00$ $(8.55 \pm 0.03) E+01$	(0.3) (0.37) (0.35)	96.908 ± 0.008 3.092 ± 0.008

*) Note: 100% decay of Pb-212 to the 6.055 min ground state of Bi-212.

A-2: Alpha radiation energies and emission probabilities

Description of table entries:

The second column gives alpha energies and their errors in keV for the nuclides listed in the first column. The third column gives alpha emission probabilities and their uncertainties (10) in percent per decay.

Source of data:

The tabulated data have been extracted from a data set recommended by participants of an IAEA Co-ordinated Research Programme (CRP) on "Decay data of the transactinium nuclides" (1978-1984). The complete data set is published in IAEA Technical Report Series No 261 (STI/DOC/10/261), pp.167-170 (1986).

Note: The data were revised and updated in October 1997. The source of new data is the ENSDF file, revision of May 1997.

Table A-2

****	p	P ²⁻
nuclide	energy (keV)	emission probability (percent per decay)
90-Th-228	5340.36 ± 0.15 5423.15 ± 0.22	$\begin{array}{cccc} 27.2 & \pm & 1.0 \\ 72.2 & \pm & 1.1 \end{array}$
90-Th-229	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
90-Th-230	$\begin{array}{rrrrr} 4438.4 & \pm & 1.6 \\ 4479.8 & \pm & 1.6 \\ 4620.5 & \pm & 1.5 \\ 4687.0 & \pm & 1.5 \end{array}$	$\begin{array}{cccc} 0.030 & \pm & 0.015 \\ 0.12 & & \\ 23.40 & \pm & 0.10 \\ 76.3 & \pm & 0.3 \end{array}$
90-Th-232	3830.0 ± 10.0 3947.2 ± 2.0 4012.3 ± 1.4	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
91-Pa-231	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	0.003 0.008 0.015 0.1 1.50 1.00 8.4 0.04 1.4 3.00 22.8 0.4 1.4 25.4 20.0 2.5 11.0

nuclide	energy (keV)	emission probability (percent per decay)
92-U-232	$5139.0 \pm 1.5 \\ 5263.36 \pm 0.09 \\ 5320.12 \pm 0.14$	$\begin{array}{cccc} 0.3 & \pm & 0.02 \\ 31.7 & \pm & 0.4 \\ 68.0 & \pm & 0.4 \end{array}$
92-U-233	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	1.61 13.2 \pm 0.2 84.4 \pm 0.5
92-U-234	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{cccc} 0.2 & \pm & 0.01 \\ 28.42 & \pm & 0.09 \\ 71.38 & \pm & 0.16 \end{array}$
92-U-235	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
92-U-236	$\begin{array}{rrrrr} 4332.0 & \pm & 8.0 \\ 4445.0 & \pm & 5.0 \\ 4494.0 & \pm & 3.0 \end{array}$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
92-U-238	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{ccccc} 0.078 & \pm & 0.012 \\ 21.0 & \pm & 3.0 \\ 79.0 & \pm & 3.0 \end{array}$
93-Np-237	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{ccccccc} 0.40 & \pm & 0.04 \\ 0.34 & \pm & 0.04 \\ 6.18 & \pm & 0.12 \\ 3.32 & \pm & 0.1 \\ 8.0 & \pm & 3.0 \\ 25.0 & \pm & 6.0 \\ 47.0 & \pm & 9.0 \\ 1.560 \\ 2.5 & \pm & 0.4 \end{array}$
94-Pu-236	5613.61 ± 0.09 5721.0 ± 0.10 5767.66 ± 0.08	$\begin{array}{rrrr} 0.18 \\ 30.6 & \pm 0.5 \\ 69.3 & \pm 0.5 \end{array}$
94-Pu-238	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{cccc} 0.003 \\ 0.105 & \pm & 0.005 \\ 28.98 & \pm & 0.1 \\ 70.91 & \pm & 0.1 \end{array}$
94-Pu-239	$\begin{array}{r} 4829.23 \pm 0.14 \\ 4866.76 \pm 0.14 \\ 4870.23 \pm 0.14 \\ 4911.54 \pm 0.14 \\ 4934.85 \pm 0.14 \\ 4962.69 \pm 0.14 \\ 4987.98 \pm 0.14 \end{array}$	$\begin{array}{c} 0.00373\\ 0.0021\\ 0.00070\\ 0.0031\\ 0.0041\\ 0.006 \pm 0.003\\ 0.0052 \end{array}$

- 12 -	
--------	--

nuclide	energy (keV)	emission probability (percent per decay)
94-Pu-239	$\begin{array}{r} 4988.65 \pm 0.14 \\ 5008.54 \pm 0.14 \\ 5029.37 \pm 0.14 \\ 5055.19 \pm 0.14 \\ 5076.13 \pm 0.14 \\ 5105.5 \pm 0.8 \\ 5111.20 \pm 0.2 \\ 5144.3 \pm 0.8 \\ 5156.50 \pm 0.14 \\ 5156.59 \pm 0.14 \end{array}$	$\begin{array}{c} 0.0022\\ 0.0182\\ 0.0051\\ 0.030 \pm 0.004\\ 11.5 \pm 0.8\\ 0.015 \pm 0.015\\ 15.1 \pm 0.8\\ 0.030\\ 73.3 \pm 0.8 \end{array}$
94-Pu-240	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	0.00108 0.08520 27.10 ± 0.1 72.80 ± 0.1
94-Pu-241	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{c} 0.000005 \pm 0.000002\\ 0.000029 \pm 0.000003\\ 0.000292 \pm 0.000005\\ 0.00201 \pm 0.000002\\ 0.000031 \pm 0.000006\\ 0.000010 \pm 0.000001\\ 0.000025\\ 0.0000025\\ \end{array}$
94-Pu-242	4598.5 ± 1.6 4754.6 ± 1.3 4856.2 ± 1.2 4900.5 ± 1.2	$\begin{array}{cccc} 0.00130 \\ 0.098 & \pm \ 0.017 \\ 22.4 & \pm \ 2.0 \\ 78.0 & \pm \ 3.0 \end{array}$
95-Am-241	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{cccccc} 0.015 & \pm \ 0.005 \\ 1.6 & \pm \ 0.2 \\ 13.0 & \pm \ 0.6 \\ 84.5 & \pm \ 1.0 \\ 0.22 & \pm \ 0.03 \\ 0.34 & \pm \ 0.05 \end{array}$
95-Am-242m	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{c} 0.00101\\ 0.000138\\ 0.000872\\ 0.02671\\ 0.412 \pm 0.011\\ 0.000505\\ 0.000184\\ 0.003947\\ 0.003167\\ 0.005370\\ 0.004774\\ \end{array}$
95-Am-243	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{c} 0.00170\\ 0.0002\\ 0.0003\\ 0.004\\ 0.005\\ 1.10\\ 11.0 \pm 0.4\\ 87.4 \pm 0.4\\ 0.120 \pm 0.020\\ 0.160 \pm 0.020\\ \end{array}$
96-Cm-242	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$

nuclide	energy (keV)	emission probability (percent per decay)
96-Cm-243	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
96-Cm-244	5513. ± 3. 5664. ± 3. 5762.70 ± 0.03 5804.82 ± 0.05	0.003500 0.0221 23.60 ± 0.20 76.40 ± 0.20
98-Cf-252	5976.50 ± 0.06 6075.77 ± 0.11 6118.24 ± 0.04	$\begin{array}{cccc} 0.23 & \pm \ 0.04 \\ 15.2 & \pm \ 0.3 \\ 81.6 & \pm \ 0.3 \end{array}$

A-3: Gamma ray energies and emission probabilities

The table does <u>not</u> contain Y-rays from daughter products in equilibrium.

Description of table entries:

The second column gives γ -ray energies and their errors in keV for the nuclides listed in the first column. The third and fourth columns give γ -ray emission probabilities and their uncertainties (10) in percent per decay and relative errors (in %) in brackets ("rel err"). In general, γ -rays with energies below 50 kev were omitted, as they are not measured in applied NDA.

Source of data:

For the revision of October 1997, the new data were taken from the ENSDF file, revision of May 1997. Most of the original data (preliminary version) were superseded and replaced in the table. The original data were extracted from a data set recommended by participants of an IAEA Co-ordinated Research Programme (CRP) on "Decay data of the transactinium nuclides", published in the IAEA Technical Report Series No 261 (STI/DOC/10/61), pp.162-166, (1986).

Table A-3

nuclide	energy (keV)	emission probability (percent per decay)	rel err
81-T1-208	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	(1.4) (0.94) (1.3) (0.71) (3.2) (0.96) (10.) (0.17)
82-Pb-212	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{cccc} 0.6 & \pm & 0.02 \\ 43.5 & \pm & 0.4 \\ 3.25 & \pm & 0.04 \end{array}$	(3.3) (0.92) (1.2)
83-Bi-212	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{ccccccc} 0.31 & \pm & 0.04 \\ 0.12 & \pm & 0.008 \\ 0.36 & \pm & 0.04 \\ 6.64 & \pm & 0.09 \\ 1.1 & \pm & 0.02 \\ 0.381 & \pm & 0.014 \\ 0.574 & \pm & 0.015 \\ 1.49 & \pm & 0.06 \end{array}$	<pre>(10.) (6.7) (10.) (1.4) (1.8) (3.7) (2.6) (4.0)</pre>
86-Rn-220	549.7 ± 0.5	0.114 ± 0.017	(10.)
88-Ra-224	241.0 ± 0.1	4.05 ± 0.04	(0.99)
90-Th-228	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	(2.5) (5.5) (3.7) (3.9)
90-Th-229	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{cccccc} 0.312 & \pm & 0.007 \\ 0.465 & \pm & 0.008 \\ 0.809 & \pm & 0.013 \\ 0.128 & \pm & 0.003 \end{array}$	(2.2) (1.7) (1.6) (2.3)

nuclide	energy (keV)	emission probability (percent per decay)	rel err
90-Th-229	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	(1.5) (1.4) (1.5) (1.4) (1.5) (1.4) (1.5) (1.9) (1.4) (1.5) (1.3)
90-Th-230	67.672 ± 0.002 143.872 ± 0.004 186.053 ± 0.004 253.729 ± 0.010	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	(10.) (10.) (10.) (10.)
90-Th-231	$58.570 \pm 0.003 72.751 \pm 0.003 81.228 \pm 0.003 82.087 \pm 0.003 84.214 \pm 0.003 89.95 \pm 0.02 99.278 \pm 0.004 102.270 \pm 0.003 124.914 \pm 0.017 134.03 \pm 0.02 135.664 \pm 0.011 217.94 \pm 0.03$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	<pre>(10.) (7.7) (3.5) (5.4) (1.5) (0.8) (0.8) (5.0) (5.0) (20.) (8.3) (2.7)</pre>
90-Th-232	59. ± 1. 126. ± 5.	0.19 0.043	
90-Th-233	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	2.5 2.7 0.3 0.8 0.32 0.34 0.13 0.13 0.13 0.16 0.12 0.23 0.15 1.4 0.17 0.21 0.16 0.68 0.12 0.14	
90-Th-234	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	(20.) (20.) (20.) (20.)
91-Pa-231	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{cccccc} 0.107 & \pm & 0.003 \\ 0.182 & \pm & 0.005 \\ 0.059 & \pm & 0.002 \\ 0.069 & \pm & 0.002 \\ 1.65 & \pm & 0.04 \\ 2.41 & \pm & 0.06 \end{array}$	(2.8) (2.8) (3.4) (2.9) (2.4) (2.5)

- 16 -

nuclide	energy (keV)	emission probability (percent per decay)	rel err
91-Pa-231	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	(2.4) (2.2) (2.3) (3.1) (3.0)
91-Pa-233	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	(3.0) (6.1) (3.5) (3.1) (0.9) (1.0) (1.1) (1.5) (1.4) (1.2)
92-U -232	57.78 ± 0.05 129.08 ± 0.05 270.2 ± 0.2 327.9 ± 0.2	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	(1.0) (0.59) (1.6) (2.1)
92-U -233	54.699 ± 0.001 118.968 ± 0.002 120.816 ± 0.001 135.3 146.345 ± 0.002 164.522 ± 0.002 208.171 ± 0.002 245.345 ± 0.002 291.354 ± 0.004 317.2 320.541 ± 0.005	$\begin{array}{ccccccc} 0.0182 & \pm & 0.0003 \\ 0.00406 & \pm & 0.00004 \\ 0.00332 & \pm & 0.00003 \\ 0.00232 & \pm & 0.00002 \\ 0.00657 & \pm & 0.00006 \\ 0.00623 & \pm & 0.00005 \\ 0.00229 & \pm & 0.00003 \\ 0.00362 & \pm & 0.00003 \\ 0.00537 & \pm & 0.00005 \\ 0.00776 & \pm & 0.00007 \\ 0.00290 & \pm & 0.00003 \end{array}$	(1.7) (0.99) (0.9) (0.86) (0.91) (0.8) (1.3) (0.83) (0.93) (0.9) (1.0)
92-U ~234	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	(1.6) (1.5)
92-U -235	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	(3.3) (10.) (0.73) (0.79) (5.9) (0.87) (1.6) (1.9) (1.0) (8.3)
92-U -236	49.369 ± 0.009 112.750 ± 0.015	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	(10.) (30.)
92-U -237	51.01 ± 0.03 59.543 ± 0.015 64.83 ± 0.02 164.61 ± 0.02 208.005 ± 0.023 221.80 ± 0.04 234.40 ± 0.04 32.36 ± 0.04 335.38 ± 0.04 368.59 ± 0.04 370.94 ± 0.04	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	(50.) (2.3) (2.3) (2.7) (2.3) (3.9) (3.9) (2.5) (2.5) (2.5) (3.1) (4.8) (3.6)

nuclide	energy (keV)	emission probability (percent per decay)	rel err
92-U -238	49.55 ± 0.06	0.064 ± 0.008	(10.)
92-U -239	$\begin{array}{r} 43.533 \pm 0.001 \\ 74.664 \pm 0.001 \\ 100. \\ 104. \\ 160.2 \pm 0.6 \end{array}$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	(2.6) (2.1) (20.) (2.7) (2.2)
93-Np-236m	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	(1.8) (10.) (6.5) (8.0)
93-Np-237	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	<pre>(5.7) (2.9) (1.6) (2.2) (1.7) (2.3) (2.8) (1.9) (1.7) (2.2) (1.7) (2.2) (1.4) (1.1) (1.3) (1.7)</pre>
93-Np-238	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	(3.7) (5.6) (3.5) (3.4) (2.5) (2.5) (2.9) (2.9) (5.2) (3.9)
93-Np-239	$\begin{array}{r} 61.460 \pm 0.002 \\ 106.123 \pm 0.002 \\ 209.753 \pm 0.002 \\ 226.42 \pm 0.08 \\ 228.183 \pm 0.001 \\ 277.599 \pm 0.001 \\ 285.460 \pm 0.002 \\ 315.880 \pm 0.003 \\ 334.310 \pm 0.002 \end{array}$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	(1.6) (1.5) (7.1) (1.6) (1.5) (2.5) (1.9) (1.5)
94-Pu-236	47.6 109.0 165. 515.6 563.2 645.	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	(30.) (30.) (30.) (30.) (30.) (30.)
94-Pu-238	43.498 ± 0.001 99.853 ± 0.003 152.720 ± 0.002	0.0395 ± 0.0008 0.00735 ± 0.00008 0.000937 ± 0.000010	(2.0) (1.1) (1.1)
94-Pu-239	$51.624 \pm 0.001 \\ 56.825 \pm 0.003 \\ 123.62 \pm 0.05$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	(1.9) (2.2) (10.)

nuclide	energy (keV)	emission probability (percent per decay)	rel err
94-Pu-239	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	(3.6) (2.8) (0.95) (2.8) (1.2) (1.2) (1.6) (1.8) (1.5) (10.) (1.2) (0.93) (0.53) (1.3) (1.6) (2.7) (0.61) (2.7) (0.61) (2.1) (0.58) (2.0) (1.9) (2.2) (0.75) (1.6) (2.2) (2.0) (2.2) (2.0) (2.0) (2.1) (2.0) (2.1) (2.0) (2.1) (2.0) (2.1) (2.0) (2.1)
94-Pu-240	$\begin{array}{r} 45.242 \pm 0.003 \\ 104.235 \pm 0.005 \\ 160.307 \pm 0.003 \end{array}$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	(1.6) (0.84) (1.0)
94-Pu-241	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	(1.9) (2.0) (0.86) (1.4)
94-Pu-242	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	(1.9) (3.9) (6.7)
95-Am-241	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	(1.1) (5.0) (5.1) (10.) (2.4) (4.4) (20.) (8.7) (2.5) (6.7) (6.7) (2.0) (10.) (5.6)

nuclide energy (keV)		emission probability (percent per decay)	rel err	
95-Am-242m	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	(5.3) (4.8) (2.7) (30.) (30.) (4.2) (30.) (3.3) (10.) (3.1) (20.) (2.2) (4.2)	
95-Am-243	74.67 ± 0.15 86.79 ± 0.15 142.18 ± 0.15	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	(2.1) (2.1) (8.3)	
96-Cm-242	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	(3.7) (20.) (10.) (30.) (30.)	
96-Cm-243	209.753 ± 0.002 228.184 ± 0.002 277.599 ± 0.002 285.460 ± 0.002	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	(3.0) (2.8) (2.9) (2.7)	
96-Cm-244	42.824 ± 0.008 98.860 ± 0.013 152.630 ± 0.020	0.0248 ± 0.0006 0.0011 ± 0.0001 0.00099	(2.4) (10.)	
98-Cf-252	43.399 ± 0.025 100.2 160. ± 5.	0.0148 ± 0.0009 0.013 0.0019	(6.1)	

*) Internal conversion not considered.

A-4: X-ray energies and intensities

Description of table entries:

First column: the **element** considered, followed by the **type** of the X-ray transition. Only K X-rays are included as the energies of other X-rays are too low to be visible in γ -ray spectra.

The following **notation** for X-ray transitions is used (e.g. $K \alpha l = Siegbahn$ notation, $K-L_1 = associated$ initial - final shell vacancy):

Κα1 K-L ₃	K β2 K−N ₂ N ₃ K β5 K−M ₄ M ₅	
Κ α2 K-L ₂	K β3 K-M ₂ K O K-O ₂ O ₃	
κ β1 K-M ₂	K β4 $K-N_4N_5$ K P $K-P_2P_3$	
Group designations:	$K \beta 1' = K \beta 1 + K \beta 3 + K \beta 5$ $K \beta 2' = K \beta 2 + K \beta 4 + K O + K P$	

The **energies** of individual X-rays and mean energies of groups are given in column 2.

The X-ray **intensities** per 100 K-shell vacancies are given in column 3. The X-ray intensities per 100 decays of the nuclide given are listed in columns 4 to 6, where the following notation is used:

 α = alpha decay β - = beta decay ec = electron capture

Source of data:

Table of Radioactive Isotopes, E. Browne, R.B. Firestone (V.S. Shirley, editor), publ. by John Wiley & Sons, USA, 1986. The tables used are:

- (a) A-chain tables, pp.208 ff.: for X-ray group energies and decay intensities (columns 4-6).
- (b) X-ray tables, pp.C-19 to C-24: for notation and all other data.

Note: The data were revised in October 1997. The new "Table of Isotopes", 8^{th} Edition, R.B. Firestone, V.S. Shirley (Ed.), J. Wiley & Sons, Inc, USA, 1996 contains in vol.2, pp. F-42 to F-77 the same data as (b) above. However, the data (a) above are not contained therein. Therefore the old "Table of Radioactive Isotopes" is also used here.

Table A-4

element type	energy (keV)	intensity	per 100 K-shell vacancies (left column), or per 100 decays of nuclide given
81-T1			83-Bi-212 α
Κ α1 Κ α2 Κ β1 Κ β3 Κ β5 Κ β1' Κ β2 Κ β4	72.873 70.832 82.574 82.115 83.093 82.434 84.865 85.134	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	0.127 ±0.021 0.075 ±0.012
ко кß2'	85.444 85.185	0.67 ±0.07	0.0125±0.0021

element type	energy (keV)	intensity per 100 K-shell vacancies (left column), or per 100 decays of nuclide given
82-Pb		81-T1-208 ß-
Κ α1 Κ α2 Κ β1 Κ β3 Κ β5	74.969 72.805 84.938 84.450	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
K B1' K B2 K B4 K O K P	84.470 84.789 87.300 87.580 87.911 88.003	$\begin{array}{c} 0.312 \pm 0.012 \\ 1.27 \pm 0.04 \\ 3.91 \pm 0.08 \\ 0.09 \pm 0.04 \\ 0.70 \pm 0.07 \\ 0.017 \pm 0.002 \end{array}$
К В2'	87.632	0.367 ±0.013
83-Bi		82-Pb-212 ß-
Κ α1 Κ α2 Κ β1 Κ β3 Κ β5	77.107 74.815 87.349 86.830 87.892	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
K B1' K B2 K B4 K O K P	87.190 89.784 90.074 90.421 90.522	$\begin{array}{c} 6.27 \pm 0.22 \\ 3.93 \pm 0.08 \\ 0.09 \pm 0.04 \\ 0.73 \pm 0.08 \\ 0.031 \pm 0.003 \end{array}$
К В2'	90.128	1.86 ±0.07
84-Po		83-Bi-212 ß-
Κ α1 Κ α2 Κ β1 Κ β3 Κ β5 Κ β1'	79.290 76.863 89.807 89.256 90.388 89.639	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
к в2 к в4 к о к р к в2'	92.317 92.618 92.983 93.095 92.673	$\begin{array}{c} 3.95 \pm 0.08 \\ 0.09 \pm 0.04 \\ 0.76 \pm 0.08 \\ 0.049\pm 0.005 \\ 0.011 \pm 0.003 \end{array}$
86-Rn		88-Ra-224 α
Κ α1 Κ α2 Κ β1 Κ β3 Κ β5	83.787 81.069 94.868 92.247 95.449	$\begin{array}{llllllllllllllllllllllllllllllllllll$
K B1' K B2 K B4 K O K P	94.966 97.530 97.853 98.257 98.389	$\begin{array}{c} 0.072 \pm 0.020 \\ 3.98 \pm 0.08 \\ 0.10 \pm 0.05 \\ 0.81 \pm 0.08 \\ 0.094 \pm 0.010 \end{array}$
К В2'	97.907	0.023 ±0.007
87-Fr 		89-Ac-224 α
Κ α1 Κ α2 Κ β1 Κ β3 Κ β5	86.105 83.231 97.474 96.815 98.069	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$

element type	energy (keV)	intensity	-		vacancies (left of nuclide given	-
87-Fr			89-Ac-	224 α		
К В2 К В4 К О К Р К В2'	100.214 100.548 100.972 101.118 100.599	$\begin{array}{c} 4.01 \pm 0.08 \\ 0.10 \pm 0.05 \\ 0.84 \pm 0.09 \\ 0.114 \pm 0.012 \end{array}$	0.032	±0.005		
88-Ra			89-Ac-	224 ec	90-Th228 a	7. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
Κ α1 Κ α2 Κ β1 Κ β3 Κ β5	88.471 85.431 100.130 99.432 100.738	$\begin{array}{rrrr} 45.7 & \pm 0.9 \\ 28.0 & \pm 0.6 \\ 10.70 & \pm 0.21 \\ 5.59 & \pm 0.11 \\ 0.362 \pm 0.015 \end{array}$	35. 22.	±16. ±10.	0.0288±0.0019 0.0175±0011	
K B1' K B2 K B4 K O K P	99.915 102.948 103.295 103.740 103.899	4.04 ±0.08 0.11 ±0.05 0.86 ±0.09 0.132±0.013	13.	±6.	0.0103±0.0007	
к ß2'	103.341		4.1	±1.9	0.0034±0.0002	
89-Ac			91-Pa-2	231 α		
K α1 K α2 K ß1 K ß3 K ß5 K ß1' K β2	90.886 87.675 102.841 102.101 103.462 102.613 105.738	$\begin{array}{r} 45.5 \pm 0.9 \\ 28.1 \pm 0.6 \\ 10.70 \pm 0.21 \\ 5.61 \pm 0.11 \\ 0.371 \pm 0.015 \\ 4.07 \pm 0.08 \end{array}$	0.476	±0.03 ±0.018 ±0.011		
к ß4 ко кр кß2'	106.098 106.563 106.738 106.137	0.11 ±0.05 0.89 ±0.09 0.146±0.015	0.092	±0.004		
90-Th			89-Ac-2	228 ß-	92-U-233 α	92-U-235 α
Κ α1 Κ α2 Κ β1 Κ β3 Κ β5	93.350 89.957 105.604 104.819 106.239	$\begin{array}{r} 45.4 \pm 0.9 \\ 28.1 \pm 0.6 \\ 10.70 \pm 0.21 \\ 5.61 \pm 0.11 \\ 0.380 \pm 0.015 \end{array}$	5.6 3.4	±1.3 ±0.8	0.0169±0.0014 0.0104±0.0008	5.5 ±0.3 3.36±0.21
K B1' K B2 K B4 K O K P	105.362 108.582 108.955 109.442 109.630	4.10 ±0.08 0.11 ±0.05 0.90 ±0.09 0.160±0.016	2.0	±0.5	0.0061±0.0005	1.98±0.12
К ß2'	108.990		0.67	±0.15	0.0020±0.0002	0.66±0.04
91-Pa			90-Th-2	231 ß-	90-Th-233 ß-	93-Np-237 α
 Κ α1 Κ α2 Κ β1 Κ β3 Κ β5 Κ β1' Κ β2 Κ β4 Κ Ο 	95.863 92.282 108.422 107.595 109.072 108.166 111.486 111.870 112.380	$\begin{array}{r} 45.3 \pm 0.9 \\ 28.1 \pm 0.6 \\ 10.70 \pm 0.22 \\ 5.64 \pm 0.11 \\ 0.389 \pm 0.016 \\ \end{array}$ $\begin{array}{r} 4.13 \pm 0.08 \\ 0.12 \pm 0.06 \\ 0.93 \pm 0.10 \end{array}$	0.39	±0.05 ±0.03 ±0.019	0.83 ±0.06 0.51 ±0.04 0.301 ±0.023	2.58±0.21 1.59±0.13 0.94±0.08
К Р К ß2'	112.575 111.897	0.156±0.016	0.076	±0.006	0.100 ±0.008	0.31±0.03

element type	energy (keV)	intensity		ll vacanci es (le ft ys of nuclide give	
92-U			91-Pa-232 ß-	91-Pa-233 ß-	91-Pa-234 ß-
Κ α1 Κ α2 Κ β1 Κ β3	98.434 94.654 111.298 110.421	$\begin{array}{rrrr} 45.1 & \pm 0.9 \\ 28.2 & \pm 0.6 \\ 10.70 & \pm 0.22 \\ 5.65 & \pm 0.11 \end{array}$	1.76 ±0.07 1.10 ±0.04	16. ±3. 10.2 ±1.6	23.3 ±1.6 15.7 ±1.0
K 85 K 81' K 82 K 84 K 0 K P	111.964 111.025 114.445 114.844 115.377 115.580	0.397±0.016 4.15 ±0.08 0.12 ±0.06 0.97 ±0.10 0.159±0.016	0.644 ±0.024	6.0 ±1.0	9.2 ±0.6
К В2'	114.866	0.109201010	0.217 ±0.009	2.0 ±0.3	3.11±0.21
92-U			93-Np-236 ec	94-Pu-239 α	94-Pu-241 α
Κα1 Κα2 Κβ1 Κβ3 Κβ5	98.434 94.654 111.298 110.421 111.964	$\begin{array}{rrrr} 45.1 & \pm 0.9 \\ 28.2 & \pm 0.6 \\ 10.70 & \pm 0.22 \\ 5.65 & \pm 0.11 \\ 0.397 \pm 0.016 \end{array}$	17.8 ±1.0 11.6 ±0.6	(5.90±0.06)E-3 (3.67±0.04)E-3	(4.48±0.09)E-4 (2.80±0.07)E-4
K B1' K B2 K B4 K O K P	111.984 111.025 114.445 114.844 115.377 115.580	4.15 ±0.08 0.12 ±0.06 0.97 ±0.10 0.159±0.016	6.5 ±0.4	(2.25±0.02)E-3	(1.6 ±0.1)E-4
к ß2'	114.866		2.20 ±0.13	(5.59±0.06)E-4	(4.46±0.12)E-5
93-Np		 	92-U-237 ß-	95-Am-241 α	
Κ α1 Κ α2 Κ β1 Κ β3 Κ β5	101.059 97.069 114.224 113.303 114.912	$\begin{array}{rrrr} 45.1 & \pm 0.9 \\ 28.3 & \pm 0.6 \\ 10.70 & \pm 0.22 \\ 5.65 & \pm 0.11 \\ 0.405 \pm 0.016 \end{array}$	26. ±4. 16. ±3.	(2.01±0.17)E-3 (1.26±0.11)E-3	
К В1' К В2 К В4 К О К Р	113.944 117.463 117.876 118.429 118.646	$\begin{array}{r} 4.17 \pm 0.08 \\ 0.12 \pm 0.06 \\ 0.97 \pm 0.10 \\ 0.162 \pm 0.017 \end{array}$	9.6 ±1.5	(7.4 ±0.6)E-4	
К ß2'	117.891		3.3 ±0.5	(2.49±0.22)E-4	
94-Pu			93-Np-238 ß-	93-Np-239 ß-	95-Am-242 ec
Κ α1 Κ α2 Κ β1 Κ β3	103.734 99.525 117.228 116.244	45.1 ±0.9 28.4 ±0.6 10.70 ±0.22 5.44 ±0.11	0.341 ±0.014 0.214 ±0.009	23.9 ±0.8 15.0 ±0.5	5.8 ±1.2 3.6 ±0.7
K 85 K 81' K 82 K 84 K 0	117.918 116.930 120.540 120.969 121.543	0.413±0.016 4.18 ±0.08 0.13 ±0.06 0.99 ±0.10	0.123 ±0.005	8.6 ±0.3	2.1 ±0.4
К Р К ß2'	121.768 120.974	0.157±0.016	0.0426±0.0019	9 2.98±0.11	0.72±0.15
94-Pu			96-Cm-243 α		1711/2012 (Marca)
Κ α1 Κ α2 Κ β1 Κ β3 Κ β5	103.734 99.525 117.228 116.244 117.918	45.1 ±0.9 28.4 ±0.6 10.70 ±0.22 5.44 ±0.11 0.413±0.016	23.0 ±0.6 14.4 ±0.4		

element type	energy (keV)	intensity per 100 K-shell vacancies (left column), or per 100 decays of nuclide given
94-Pu		96-Cm-243 α
K B2 K B4 K O K P K B2'	120.540 120.969 121.543 121.768 120.974	$\begin{array}{r} 4.18 \pm 0.08 \\ 0.13 \pm 0.06 \\ 0.99 \pm 0.10 \\ 0.157 \pm 0.016 \end{array}$

A-5: Thermal neutron cross sections, resonance integrals and related parameters

This table contains **thermal neutron cross sections**, **Westcott g-factors** and **resonance integrals** for **capture** and **fission** (if significant). All data are taken from [1] unless indicated by footnotes, as this source gives uncertainties which are not included in the more recent data files ENDF/B-6 (only sometimes included in the text information) or JENDL-3.

Description of table entries:

The second column describes the thermal neutron cross section of the following type:

- $\sigma_{\! \circ}$ 2200 m/s cross section
- σ Maxwellian average cross section (kT = 0.0253 eV)
- $\sigma_{\rm r}$ cross section in a thermal reactor neutron spectrum
- m cross section leading to a metastable state of product
- g cross section leading to ground state of product
- m+g sum cross section
- g: Westcott g-factor for the deviation of the cross section from the 1/v shape for a Maxwellian neutron spectrum with kT = 0.0253 eV

Resonance Integral: Infinite dilution resonance integral including the 1/v part

Source of data:

[1] S.F Mughabghab, Neutron Cross Sections Vol. 1:Resonance Parameters and Thermal Cross Sections, Part B: Z = 61-100; Academic Press, NY, 1984

ENDF/B-6: the US Evaluated Nuclear Data File, version 6

JENDL-3: the Japanese Evaluated Nuclear Data Library, version 3

The data were revised in October 1997. The revised data were taken from the October 1996 revision of the ENDF/B-6 Standards File (NNDC Brookhaven, USA). The evaluated data files of complete $\sigma(E)$ data, ENDF/B-5 and JENDL-3 are available from the 4 Data Centres (see Introduction) upon request.

Table A-	5
----------	---

Nuclide	Thermal New	utron Cross (b)	s Sections	Westcott g-factor	Reson: Integra	
90-Th-232	σ_{o} -capt	7.37	± 0.06	0.9982	85. <u>+</u>	: 3,
92-U-233	σ_{o} -capt σ_{o} -fiss	45 .5 529.1	± 0.7 ± 1.2	1.0040 ²) 0.9955 ± 0.0015	137. ± 760. ±	6. 17.
92-U-234	σ_{o} -capt	99.8	± 1.3	0.9903	660. ±	70.
92-U-235	σ_{o} -capt σ_{o} -fiss	98.59 584.81	± 0.8 ± 1.11	0.9897 ± 0.0008 0.9786 ± 0.0008		6.0 5.0
92 - U-236	σ_{o} -capt	5.11	± 0.21		360. ±	15.
92 - U-237	o-capt	443.	±167.		1200. ±	200.
92-U-238	σ°-capt	2.680	± 0.019	1.0009	277. ±	3.
93-Np-237	σ_{o} -capt	175.9	± 2.9	0.982	640. ±	50.

Nuclide	Thermal Neu	tron Cros (b)	s Sections	Westcott g-factor	Resonance Integral (b)
93-Np-239	σ _r -capt	68.	$\pm 10.^{7}$		
94-Pu-238	σ_{o} -capt	540.	± 7.	0.9563	162. ± 15.
94-Pu-238	σ_{o} -fiss	17.9	± 0.4	0.9562	33. ± 5.
94-Pu-239	σ₀-capt σ₀-fiss	271.43 747.99	± 2.14 ± 1.87	1.1435 ⁴) 1.0563 ± 0.0022	200. ± 20. 301. ± 10.
94-Pu-240	σ_{o} -capt	289.5	± 1.4	1.0264	8100. ± 200.
94-Pu-241	σ₀-capt σ₀-fiss	361.29 1012.68	± 4.95 ± 6.58	1.038 1.046 ± 0.006	179.9 ³) 572.6 ³)
94-Pu-242	σ_{o} -capt	18.5	± 0.5	1.0096	1115. ± 40.
95-Am-241	$\sigma_{o}(g) - capt$ $\sigma_{o}(m) - capt$ $\sigma_{o}(m+g) - capt$ $\sigma_{o} - fiss$	533. 54. 587. 3.20	± 13. ± 5. ± 12. ⁵) ± 0.09	to be computed 1.051 0.996	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
95 - Am-242g	o-fiss o₀-capt	2100. 5500.	±200.		1260. ¹) 391. ¹)
95-Am-242m	σ-capt σ _o -fiss	2000. 6950.	±600. ±280.	1.104	246. ⁶) 1800. ± 65.
95-Am-243	σ₀-capt σ-fiss	75.1 0.198	± 1.8 3± 0.0043	1.014	1820. ± 70. 9. ± 1.
96-Cm-242	σ-capt σ₀-fiss	16. 5.064	± 5. °)		110. ± 20. 20.0 ⁶)
96-Cm-243	σ _o -capt σ _o -fiss	130. 617.	± 10. ± 20.	1.005 1.0054	215. ± 20. 1570. ± 100.
96-Cm-244	σ₀-capt σ₀-fiss	15.2 1.04	± 1.2 ± 0.20	0.999 0.989	650. ± 30. 12.5 ± 2.5

- ¹) JENDL-3 data are used. There is a discrepancy between ENDF/B-6 and JENDL-3; no value given by Mughabghab [1]
- $^2)$ calculated from $\sigma(abs)$ and g(abs), 574.7 \pm 1.0 b and 0.9996 \pm 0.0011, respectively
- $^3)$ $\sigma_{\!_o}$ cross sections for capture and fission taken from ENDF/B-6 standard, RI values taken from JENDL-3
- ⁴) calculated from $\sigma(abs)$ and g(abs), 1019.42 ± 2.9 b and 1.0768 ± 0.003, respectively
- ⁵) Mughabghab's [1] value not in agreement with ENDF/B-6 (620 \pm 13 b)
- ⁶) value from JENDL-3; no values given in [1] and ENDF/B-6
- ⁷) JENDL-3 contains more recent capture data, but without uncertainty: $\sigma_o=37.0$ barn, RI=445 barn.

A-6: Average number of neutrons emitted per fission (\overline{v})

Average number of total and prompt neutrons:

The average numbers of total neutrons for thermal neutron induced fission of U-233,235, Pu-239,241 and spontaneous fission of Cf-252 are taken from the most recent version of the internationally agreed standards file [1]. The prompt neutron data for the same reactions were calculated from the total and delayed neutron data.

For the other nuclides the average numbers of total and prompt neutrons for thermal neutron induced and spontaneous fission, which are identical within their uncertainties, are taken from [2], which is the only and most recent source that contains all these data. In the evaluation [2], all data were normalised to $\bar{\nu}$ of U-235 thermal neutron induced fission and Cf-252 spontaneous fission. The normalisation values used in [2] are almost identical to the standard values from [1]. $\bar{\nu}$ data as a function of incident neutron energy are included in the large data files, (e.g. ENDF/B-6 or JENDL-3). Some formulae of the energy-dependence can be found in [6], e.g. for U-235, U-238 and Pu-239.

No evaluations of total or prompt $\bar{\nu}$ data from fission in a fast reactor or fission neutron spectrum are available.

Average number of delayed neutrons:

The total delayed neutron yield is listed in the last column. A recent OECD/NEA committee meeting recommended [5] the use of delayed neutron yields evaluated from direct measurements rather than those obtained from summation calculations. (In the latter method, delayed neutron yields are derived from individual delayed neutron precursor data and fission yields, and there the charge distribution, which is uncertain in many cases, has a significant effect on the results.) Following this recommendation, the data of Tuttle [3], partially updated [5] by results of new measurements, are chosen for the tables. Recent results from summation calculations [4] are used for nuclides where no data are given in [3,5].

Source of data:

- ENDF/B-6 Standards file 1990 (available from Nuclear Data Centres upon request, when requested from NDS: documentation and data are in IAEA-NDS-88 see the help-pages for further informations).
- [2] N.E. Holden and M.S. Zucker, Int. Conf. on Nuclear Data for Basic and Applied Science, Santa Fe, New Mexico, USA, 13-17 May 1985, proceedings p.1631.
- [3] R.J. Tuttle, INDC(NDS)-107 (1979) 29
- [4] R.W. Mills, Thesis, University of Birmingham (UK), March 1995: the most recent UKFY3 fission yields have been used.
- (5] J. Blachot et al., "Status of Delayed Neutron Data 1990", report NEACRP-L-323 (1990)
- [6] J.Frehaut, "Coherent Evaluation of $\bar{\nu}_p$ for U-235, U-238 and Pu-239", Report NEANDC(E)238 (INDC(Fr)67), 1986.

ENDF/B-6: the US Evaluated Nuclear Data File, version 6

JENDL-3: the Japanese Evaluated Nuclear Data Library, version 3

The evaluated data files of complete ν data, as part of ENDF/B-6 and JENDL-3, are available from the 4 Data Centres (see Introduction for further information) upon request.

Table A-6.1: Average numbers of total, prompt and delayed neutrons from thermal neutron fission of U-233,5, Pu-239,41, Am-241, Cm-243,5 and spontaneous fission of Cm-242,4, Cf-252

nuclide		total			pr	ompt		Ċ	le.	layed	
U -233	2.4946	± 0.0040	[1]	2.4872	±	0.0040	[1]	0.00667	±	0.00029	[3]
U -235	2.4320	± 0.0036	[1]	2.4153	±	0.0036	[1]	0.0166	±	0.0005	[5]
Pu-239	2.8815	± 0.0052	[1]	2.8752	±	0.0052	[1]	0.00654	±	0.00026	[5]
Pu-241	2.9453	± 0.0059	[1]	2.9301	±	0.0059	[1]	0.0152	±	0.0011	[3]
Am-241	3.22	± 0.04	[2]	3.22	±	0.04	[2]	0.00411	±	0.00057	[4]
Cm-242	2.54	± 0.02	[2]	2.54	±	0.02	[2]	0.00125	±	0.00033	[4]
Cm-243	3.43	± 0.14	[2]	3.43	±	0.14	[2]	0.00222	±	0.00066	[4]
Cm-244	2.72	± 0.02	[2]	2.72	±	0.02	[2]	0.00330	±	0.00098	[4]
Cm-245	3.75	± 0.10	[2]	3.75	±	0.10	[2]	0.00440	±	0.00122	[4]
Cf-252	3.7676	± 0.0049	[1]	3.7590	±	0.0049	[1]	0.0086	±	0.0010	[3]

Table A-6.2:Average numbers of delayed neutrons from fission in a fast reactor
neutron spectrum

nuclide	average number of delayed neutrons
92-Th-232	0.0531 ± 0.0023 [3]
92-U -238	0.0439 ± 0.0010 [3]
94-Pu-240	0.0095 ± 0.0008 [3]
94-Pu-242	0.0221 ± 0.0026 [3]

A-7: Prompt neutron multiplicity distributions P(v)

There are only 2 sets of evaluated prompt neutron multiplicity distributions for thermal neutron induced and spontaneous fission known to us. The data are reproduced below (no new data since preliminary issue).

Table 7.1: P(v) values for thermal neutron induced fission (with uncertainties)

	U-233	U-235	Pu-239	Pu-241
0	0.0262 ± 0.0012	0.0317 ± 0.0015	0.0109 ± 0.0001	0.0108 ± 0.0005
1	0.1550 ± 0.0022	0.1720 ± 0.0014	0.0995 ± 0.0028	0.0895 ± 0.0014
2	0.3328 ± 0.0038	0.3363 ± 0.0031	0.2750 ± 0.0003	0.2660 ± 0.0017
3	0.3225 ± 0.0020	0.3038 ± 0.0004	0.3270 ± 0.0041	0.3313 ± 0.0041
4	0.1325 ± 0.0057	0.1268 ± 0.0036	0.2045 ± 0.0087	0.2140 ± 0.0039
5	0.0272 ± 0.0024	0.0266 ± 0.0026	0.0728 ± 0.0133	0.0749 ± 0.0050
6	0.0037 ± 0.0018	0.0026 ± 0.0009	0.0097 ± 0.0027	0.0112 ± 0.0024
7	0.0001 ± 0.0001	0.0002 ± 0.0001	0.0006 ± 0.0009	0.0023 ± 0.0013

Source of data:

N.E. Holden and M.S. Zucker, Nucl.Sci.Eng. 98 (1988) 174

Table	7.2:	P(ν)	values	for	spontaneous	fission	(without	uncertainties)
-------	------	------	--------	-----	-------------	---------	----------	----------------

1,7100000	1		
	Cm-242	Cm-244	Cf-252
0	0.02125	0.01501	0.00217
1	0.14674	0.11617	0.02556
2	0.32675	0.29984	0.12541
3	0.32683	0.33316	0.27433
4	0.13751	0.18378	0.30517
5	0.03738	0.04298	0.18523
6	0.00259	0.00879	0.06607
7	0.00076	0.00027	0.01414
8	0.00019		0.00186
9			0.00006

Source of data:

N.E. Holden and M.S. Zucker, Int. Conf. on Nuclear Data for Basic and Applied Science, Santa Fe, New Mexico, USA, 13-17 May 1985; proceedings p. 1631.

A-8: Delayed neutron six-group parameters

An OECD/NEA committee recommended [1] the group parameters from the summation calculations of Brady and England [2] because of the overall consistency of the data and because the overall differences with experimental results (like [3]) were small enough so that the data of [2] can be used without sacrificing accuracy. Following this recommendation and because there was no new evaluation since then, we have adopted the group parameters of [2]. No evaluated group parameters for Cm-242,243,244 are presently available.

Description of table entries:

λ = del	ayed	neutron	group	decay	constant
---------	------	---------	-------	-------	----------

- α = ratio (del.neutron group yield)/(total del.neutr. yield)
- yield = delayed neutron group yield (in % per fission)

<u>References</u>:

- J. Blachot et al., "Status of Delayed Neutron Data 1990", report NEACRP-L-323 (1990)
- [2] C.M. Brady and T.R. England, Nucl.Sci.Eng. 103 (1989) 135
- [3] G.R. Keepin, "Physics of Nuclear Kinetics", Addison-Wesley Publishing Co., Reading, Mass. (1965), tables on pages 86, 87 and 90

Table A-8: Delayed neutron six-group parameters from [2]

		r	Г	Γ	Г	[
group	λ (sec ⁻¹)	αα	yield (%)	λ(sec ⁻¹)	αα	yield (%)	
		90-Th-232 d	East	92-U-233 thermal			
1	0.0131	0.0364	0.1933	0.0129	0.0674	0.0450	
2	0.0350	0.1259	0.669	0.0333	0.1927	0.1285	
3	0.1272	0.1501	0.797	0.1163	0.1383	0.0922	
4	0.3287	0.4406	2.340	0.2933	0.2798	0.1866	
5	0.9100	0.1663	0.883	0.7943	0.1128	0.0752	
6	2.8206	0.0808	0.429	2.3751	0.2091	0.1395	
	9	0-U-235 the	ermal		92-U-238 f	ast	
1	0.0133	0.0380	0.0631	0.0136	0.0139	0.0610	
2	0.0325	0.1918	0.318	0.0313	0.1128	0.495	
3	0.1219	0.1638	0.272	0.1233	0.1310	0.575	
4	0.3169	0.3431	0.570	0.3237	0.3851	1.691	
5	0.9886	0.1744	0.290	0.9060	0.2540	1.115	
6	2.9544	0.0890	0.148	3.0487	0.1031	0.453	
		94-Pu-238 1	fast	94-Pu-239 thermal			
1	0.0133	0.0377	0.0177	0.0133	0.0306	0.02001	
2	0.0312	0.2390	0.112	0.0301	0.2623	0.1715	
3	0.1162	0.1577	0.074	0.1135	0.1828	0.1196	
4	0.2888	0.3562	0.167	0.2953	0.3283	0.2147	
5	0.8561	0.1590	0.075	0.8537	0.1482	0.0969	
6	2.7138	0.0504	0.0237	2.6224	0.0479	0.0313	
		94-Pu-240 1	fast	94	-Pu-241 th	ermal	
1	0.0133	0.0320	0.0304	0.0137	0.0167	0.0254	
2	0.0305	0.2529	0.240	0.0299	0.2404	0.365	
3	0.1152	0.1508	0.143	0.1136	0.1474	0.224	
4	0.2974	0.3301	0.314	0.3078	0.3430	0.521	
5	0.8477	0.1795	0.171	0.8569	0.1898	0.288	
6	2.8796	0.0547	0.0520	3.0800	0.0627	0.095	
						-	

group	λ (sec ⁻¹)	α	yield (%)	λ(sec ⁻¹)	α	yield (%)		
	:	94-Pu-242 :	East	95	95-Am-241 thermal			
1	0.0136	0.0196	0.0433	0.0133	0.0305	0.0118		
2	0.0302	0.2314	0.511	0.0300	0.2760	0.1068		
3	0.1154	0.1256	0.278	0.1145	0.1531	0.0592		
4	0.3042	0.3262	0.721	0.2949	0.3122	0.1208		
5	0.8272	0.2255	0.498	0.8818	0.1825	0.0706		
6	3.1372	0.0716	0.158	2.6879	0.0457	0.0177		
	96	-Cm-245 th	ermal	98-Cf-252 spontaneous				
1	0.0134	0.0222	0.00988	0.0136	0.0124	0.0107		
2	0.0307	0.1788	0.0796	0.0291	0.3052	0.262		
3	0.1130	0.1672	0.0744	0.1068	0.1813	0.156		
4	0.3001	0.3706	0.1649	0.3024	0.2992	0.257		
5	0.8340	0.2054	0.0914	0.8173	0.1729	0.149		
6	2.7686	0.0559	0.0249	2.6159	0.0290	0.0249		

SECTION B: FISSION PRODUCT NUCLEAR DATA

The table below lists the fission products for which half-lives $(T^{\frac{1}{2}})$, γ -ray data and capture cross sections (σ) as well as branching fractions to isomeric states in decay (br) and **neutron capture** (not indicated below) are given in this Section.

nuclide	T ¹ 2	br	y-rays	σ
c ¹)	<u>Arki</u> kaan an			+
Br-85		+		
Kr-85m		+		
Kr-85	+		+	+
Zr ¹)				+
Zr-95	+	+	+	+
Nb-95m	+	+	+	
Nb-95	+		+	
Mo ¹)				+
Ru¹)				+
Ru-103	+		+	+
Ru-106	+		+	
Rh-106	+		+	
Sb-125	+		+	
Xe ¹)				+
I-131	+	+	+	
Xe-131m	+	+	+	
I-133		+		
Xe-133m	÷	+		
Xe-133	+		+	+
Cs-133				+
Cs-134	+	+	+	+
I-135	+	+		
(e-135m	+	+		

1) Stable isotopes for mass spectrometric measurements

Nuclides with A=147-153 are included for calculating the formation of Eu-154.

B-1: Half-lives and decay branching fractions

Table B-1.1: Half-lives and decay mode branching

Description of table entries:

decay mode:	IT	beta decay isomeric tran electron capt		
units:	s m h	second minute hour	d Y	day year=365.2422 days
rel err:	rel	ative error (i	n 8))
branching:	giv	en for each de	cay	mode (should sum up to 100%)
<u>Source of data</u> :				

ENSDF file. Selected nuclides taken from IAEA-TECDOC-619, September, 1991.

nuclide	units	half-life value	rel err	decay mode	braching (percent/decay)	
36-Kr- 85	У	10.756 ± 0.018	(0.17)	ß–	100.000	
40-Zr- 95	d	64.02 ± 0.04	(0.06)	ß–	100.000	
41-Nb- 95m	d	3.608 ± 0.033	(0.92)	IТ ß-	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	
41-Nb- 95	d	34.975 ± 0.007	(0.02)	ß–	100.000	
44-Ru-103	d	39.26 ± 0.02	(0.05)	ß–	100.000	
44-Ru-106	У	1.0228 ± 0.0004	(0.04)	ß–	100.000	
45-Rh-106	s	29.80 ± 0.08	(0.27)	ß–	100.000	
51-Sb-125	У	2.7589 ± 0.0016	(0.06)	ß-	100.000	
53-I -131	đ	8.02070± 0.0001	1 (0.001)	ß-	100.000	
54-Xe-131m	d	11.84 ± 0.07	(0.6)	IT	100.000	
54-Xe-133m	d	2.19 ± 0.03	(1.4)	IT	100.000	
54-Xe-133	d	5.243 ± 0.001	(0.02)	ß–	100.000	
55-Cs-134	У	2.0648 ± 0.0010	(0.05)	ß- ес	99.9997 ± 0.0001 0.0003 ± 0.0001	
53-I -135	h	6.57 ± 0.02	(0.3)	ß–	100.000	
54-Xe-135m	m	15.29 ± 0.05	(0.33)	IТ ß-	99.996 0.004	
54-Xe-135	h	9.14 ± 0.02	(0.24)	ß–	100.000	
55-Cs-137	У	30.18 ± 0.15	(0.5)	ß-	100.000	
56-Ba-140	d	12.752 ± 0.003	(0.02)	ß-	100.000	
57-La-140	d	1.6781 ± 0.0003	(0.01)	ß–	100.000	

nuclide	half-life units value		rel err	decay mode	braching (percent/decay)		
58-Ce-141	d	32.501	± 0.005	(0.03)	ß-	100.000	
58-Ce-144	d	284.893	± 0.008	(0.003)	ß-	100.000	
59-Pr-144	m	17.28	± 0.05	(0.29)	ß–	100.000	
60-Nd-147	d	10.980	± 0.010	(0.09)	ß-	100.000	
61-Pm-147	У	2.6234	± 0.0002	(0.01)	ß –	100.000	
61-Pm-148m	đ	41.29	± 0.11	(0.27)	ß- IT	95.0 5.0	± 0.4 ± 0.4
61-Pm-148	d	5.370	± 0.009	(0.17)	ß–	100.000	
61-Pm-149	d	2.2110	± 0.0020	(0.09)	ß–	100.000	
61-Pm-151	d	1.1830	± 0.0016	(0.14)	ß–	100.000	
62-Sm-151	У	90.0	± 6.0	(6.7)	ß–	100.000	
62-Sm-153	d	1.9280	± 0.0041	(0.21)	ß-	100.000	
63-Eu-154	У	8.593	± 0.004	(0.09)	ß- ec	99.980 0.020	± 0.010 ± 0.010
63-Eu-155	У	4.7611	± 0.0013	(0.03)	ß	100.000	

Table B-1.2: Branching to daughters

Branching fractions are given for some important daughter products.

Source of data: ENSDF file

nuclide	daughter	branching (percent/decay)
35-Br- 85	36-Kr- 85	0.18 ± 0.0
36-Kr- 85m	36-Kr- 85	21.4 ± 0.4
40-Zr- 95	41-Nb- 95m	1.13 ± 0.007^{-1}
53-I -131	54-Xe-131m	1.10 ¹)
53-I -133	54-Xe-133m	2.88 ± 0.03 ¹)
53-I -135	54-Xe-135m	15.7 ± 0.3 ¹)

¹) Branching to ground state = 100-branching to metastable state

Description of table entries:

- 1st column: fission product nuclide
- 2nd column: Y-ray energies and their uncertainties in keV
- 3rd column: γ-ray emission probabilities and their 1σ uncertainties in percent per decay and relative uncertainties (in %) in brackets.
- 4th column: systematic (relative) error contributions (in %) from conversion of relative to absolute intensities for each nuclide (included in the errors given in the 3rd column.)

Source of data:

E. Browne, R.B. Firestone: Table of Radioactive Isotopes (V.S. Shirley, ed.), John Wiley & Sons, NY, 1986. Updates to this handbook from the Berkeley decay data file (data derived from ENSDF), E. Browne, private communication, 1986/87.

Note: The data were revised in October 1997. Updated values of energies and emission probabilities were taken from the ENSDF data file as retrieved by MEDLIST program, the version dated May 1997.

Table B-2:

nuclide	energy (keV)	emission probability (percent per decay)	syst. err.
36-Kr-85	513.997 ± 0.005	0.434 ± 0.010 (2.3)	2.27
40-Zr-95	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.18
41-Nb-95m	235.680 ± 0.020	24.9 ± 0.8 (3.2)	0.6
41-Nb-95	765.807 ± 0.006	99.81 ± 0.03 (0.03)	0.03
44-Ru-103	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{ccccccc} 0.443 & \pm & 0.011 & (& 2.5 &) \\ 0.303 & \pm & 0.006 & (& 2.0 &) \\ 0.345 & \pm & 0.005 & (& 1.5 &) \\ 91.0 & \pm & 1.3 & (& 1.4 &) \\ 0.868 & \pm & 0.012 & (& 1.4 &) \\ 5.76 & \pm & 0.07 & (& 1.2 &) \end{array}$	1.12
45-Rh-106	$\begin{array}{cccccccc} 511.8640 \pm 0.0031\\ 616.22 \pm 0.09\\ 621.93 \pm 0.06\\ 873.49 \pm 0.05\\ 1050.360 \pm 0.048\\ 1128.042 \pm 0.021\\ 1562.219 \pm 0.048\\ 1766.25 \pm 0.05\\ 1796.931 \pm 0.054\\ 1927.22 \pm 0.09\\ 1988.595 \pm 0.093\\ 2112.599 \pm 0.088\\ 2366.04 \pm 0.07\\ 2405.96 \pm 0.09\end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2.9
51-sb-125	35.4910 ± 0.0005 172.626 ± 0.021 176.316 ± 0.010	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1.00

- 36 -

nuclide	energy (keV)				
51-Sb-125	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$			
53-I -131	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.99		
54-Xe-131m	163.9310 ± 0.0068	1.960 ± 0.059 (3.0)	3.0		
54-Xe-133	80.997 ± 0.003	38.0 ± 0.7 (1.8)	2.7		
55-Cs-134	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1.00		
55-Cs-137	661.6600 ± 0.0030	85.1 ± 0.2 (0.24)	0.24		
56-Ba-140	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.90		
57-La-140	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.08		
58-Ce-141	145.4400 ± 0.0028	$48.2 \pm 0.3 (0.6)$	0.80		

nuclide	energy (keV)	emission probability (percent per decay)	syst. err.	
58-Ce-144	80.120 ± 0.005 133.5150 ± 0.002	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1.4	
59-Pr-14 4	696.510 ± 0.003 1489.160 ± 0.005 2185.662 ± 0.007	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1.04	
60-Nd-147	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3.9	
61-Pm-147	121.258 ± 0.043	0.0020 ± 0.0001 (3.9)	3.9	
61-Pm-148m	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.75	
51-Pm-148	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2.25	
63-Eu-154	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5.6	

- 38 -

nuclide	energy (keV)	emission probability (percent per decay)	syst. err.
63-Eu-154	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{ccccccccc} 0.133 \pm 0.005 & (\ 3.6 \) \\ 0.864 \pm 0.007 & (\ 0.8 \) \\ 35.0 \pm 0.3 & (\ 0.8 \) \\ 0.700 \pm 0.008 & (\ 1.1 \) \\ 1.788 \pm 0.015 & (\ 0.8 \) \end{array}$	
63-Eu-155	$\begin{array}{r} 45.2972 \pm 0.0013 \\ 60.0086 \pm 0.0010 \\ 86.0660 \pm 0.0047 \\ 86.5420 \pm 0.0020 \\ 105.3120 \pm 0.0020 \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	6.5

B-3: Thermal neutron capture cross sections and resonance integrals

The main reference used for fission product cross section data are the evaluations by Gryntakis [1] and Mughabghab [2,3]. The more recent data files ENDF/B-6 [7] or JENDL-3 [6] were rarely used because they do not contain data uncertainties (except in the text information for some nuclides in ENDF/B-6). The compilation by De Corte [4] was not used (except in one case) because recommended data are not given for all fission products.

The thermal cross sections in [1] agree with those in [2] or [3] in almost all cases, and the values are taken from [1] (more recent) unless indicated by footnotes.

The agreement for resonance integrals is not so good. In cases of differences the data were selected by comparison to ENDF/B-6 and JENDL-3 and/or by one of the following criteria (special cases are indicated by footnotes):

The values of [1] were chosen when:

- no resonance integral is given in [2] or [3], or
- more recent measurements were included in [1], or
- the resonance integral given in [2] or [3] was calculated from resonance parameters, but did not include more recent measurements.

The values of [2] or [3] were chosen when:

- \cdot $\,$ more recent measurements were included, or
- the value in [1] was deduced from old measurements only, and the value in [2] or [3] was calculated from resonance parameters (indicated by "C") which often included more recent measurements.

NOTE: The data were revised in October 1997. Comparison was made with the most recent libraries JEF-2.2 and JENDL-3.2. The changes were made only in cases when new measurements justified them.

Description of table entries:

The second column describes the thermal neutron cross section of the following type:

- $\sigma_{\!o}$ $\,$ 2200 m/s cross section $\,$
- σ Maxwellian average cross section (kT = 0.0253 eV)
- σ_r cross section in a thermal reactor neutron spectrum
- m cross section leading to a metastable state of product
- g cross section leading to ground state of product
- m+g sum cross section

Resonance Integral: Infinite dilution resonance integral including the 1/v part, "Ref." gives the source of the tabulated resonance integral, "C" stands for calculation from resonance parameters.

Source of data:

- G. Gryntakis et al., Thermal Neutron Cross Sections and Infinite Dilution Resonance Integrals, in "Handbook on Nuclear Activation Data", IAEA Technical Report Series No. 273 (1987), page 199
- [2] S.F. Mughabghab et al., Neutron Cross Sections Vol. 1: Resonance Parameters and Thermal Cross Sections, Part A: Z=1-60; Academic Press, NY, 1981
- [3] S.F. Mughabghab, Neutron Cross Sections Vol. 1: Resonance Parameters and Thermal Cross Sections, Part B: Z=61-100; Academic Press, NY, 1984

- [5] JEF-2.2: the Joint European File, NEADB, Paris
- [6] JENDL-3.2: the Japanese Evaluated Nuclear Data Library
- [7] ENDF/B-6: the US Evaluated Nuclear Data File, version 6

The evaluated data files of complete $\sigma(E)$ data, ENDF/B-6 and JENDL-3.2 are available from the 4 Data Centres (see Introduction) upon request.

Table	B-3 :
-------	--------------

Nuclide	Thermal	neutron cro (b)	ss section	Resonance Integral (b)	Ref.
36-Kr-82 83 84 85 85	σ σ (m) σ (g) σ (m+g) σ	$\begin{array}{cccccccc} 30.0 & \pm \\ 180.0 & \pm \\ & 0.090 & \pm \\ & 0.042 & \pm \\ & 0.110 & \pm \\ & 1.66 & \pm \\ & 0.003 & \pm \end{array}$	10.0 30.0 0.013 0.004 0.015 0.2 0.002	$\begin{array}{ccccc} & 190.0 & \pm & 20.0 \\ \text{C} & 183.0 & \pm & 25.0 \\ & 2.4 \\ & 0.8 \\ & 3.2 & \pm & 0.5 \\ & 1.8 & \pm & 1.0 \\ & 0.1 & \pm & 0.04 \end{array}$	<pre>[1] [2] [1] [1] [1] [1,2] [1]</pre>
40-Zr-90 91 92 93 94 95 96	σ σ σ σ σ σ σ σ	$\begin{array}{r} 0.011 \pm \\ 1.24 \pm \\ 0.22 \pm \\ 2.6 \pm \\ 0.0499\pm \\ 0.49 \\ 0.0229\pm \end{array}$	0.005 0.25 0.06 1.4 0.0024 0.0010	$\begin{array}{ccccccc} C & 0.14 \\ & 6.8 \pm 1.3 \\ & 0.63 \pm 0.11 \\ 20.0 \pm 10.0 \\ & 0.30 \pm 0.07 \\ & 6.5 \pm 1.4 \\ & 5.3 \pm 0.3 \end{array}$	[2] [1] [1] [1] [1] [1] [5]
42-Mo-95 96 97 98 100	σ σ σ σ σ	$\begin{array}{rrrr} 14.0 & \pm \\ 0.5 & \pm \\ 2.1 & \pm \\ 0.130 & \pm \\ 0.199 & \pm \end{array}$	0.5 0.2 0.5 0.006 0.003	$\begin{array}{cccccc} C & 109.0 & \pm & 5.0 \\ & 24.0 & \pm & 4.0 \\ C & 14.0 & \pm & 3.0 \\ & 6.9 & \pm & 0.3 \\ & 3.75 & \pm & 0.15 \end{array}$	[2] [1] [2] [5] [2]
44-Ru-100 101 102 103 104 106	σ. σ. σ. σ. σ. σ. σ.	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	0.6 0.9 0.07 0.02 0.045	$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	<pre>[1] [1] [2] [1] [2] [1] [2] [1]</pre>
54-Xe-130 131 132 133g 136	Jacobia Jacobia Jacobia Jacobia	$\begin{array}{c} 0.45 \pm \\ 6.0 \pm \\ 6.45 \pm \\ 85.0 \pm \\ 0.050 \pm \\ 0.450 \pm \\ 190.0 \pm \\ 0.265 \pm \\ (2.65 \pm \\ 0.26 \pm \end{array}$	0.10 1.0 1.0 10.0 0.010 0.060 90.0 0.0003 0.020 0.11) E+06 0.02	$\begin{array}{cccccccc} C & 1.17 \\ C & 13.72 \\ C & 14.89 \\ & 900.0 & \pm & 100.0 \\ & 0.9 & \pm & 0.2 \\ & 4.6 & \pm & 0.6 \\ & 134 \\ & 0.1 \\ & 0.3 \\ C & 7600.0 & \pm & 500. \\ & 0.74 & \pm & 0.21 \end{array}$	<pre>[1] [1] [1] [2] [1,2] [1,2] [1] [1] [2] [1] [2] [1,2]</pre>
55-Cs-133 134g 135 137g	σ.(m) σ.(m+g) σ _r σ σ _r (g)	$\begin{array}{cccc} 2.5 & \pm \\ 29.0 & \pm \\ 140.0 & \pm \\ 8.7 & \pm \\ 0.110 & \pm \\ \end{array}$	0.2 1.5 12.0 0.5 0.033	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	[1] [1] [6] [1] [6]
58-Ce-144g	σ	1.0 ±	0.1	2.6 ± 0.3	[1,2]

Nuclide	Thermal	neutron c (b)	cross secti	Lon	Resonance Integral (b)	Ref.
59-Pr-141 143	σ.(m) σ.(m+g) σ	3.9 11.5 90.0	$ \pm 0.3 \\ \pm 0.3 \\ \pm 10.0 $		17.8 ± 3.5 190.0 ± 25.0	[1] [2]
60-Nd-142 143 144g 145 146 147 148 150	σ σ. σ. σ. σ. σ. σ.	$ 18.7 \\ 325.0 \\ 3.6 \\ 42.0 \\ 1.4 \\ 440.0 \\ 2.5 \\ 1.2 \\ $	$\begin{array}{c} \pm & 0.7 \\ \pm & 10.0 \\ \pm & 0.3 \\ \pm & 2.0 \\ \pm & 0.1 \\ \pm & 150.0 \\ \pm & 0.2 \\ \pm & 0.2 \end{array}$		$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	[1] [1] [1] [1] [1] [1,2] [1,2]
61-Pm-147 148m 148g 149 151	σ(m) σ(g) σ(m+g) σ σ _r σ σ σ	85.0 96.0 181.0 2000.0 2000.0 1400.0 173.0	$\begin{array}{cccc} \pm & 5.0 \\ \pm & 2.0 \\ \pm & 7.0 \\ \pm 2500.0 \\ \pm 1000.0 \\ \pm 300.0 \end{array}$		$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	<pre>[1] 1) [1] [1] 2) [1,3] [6] [1] [1]</pre>
62-Sm-147 148 149 150 151 152 153 154	σ.	64.0 2.7 1000.0 102.0 5000.0 206.0 420.0 7.74	$\begin{array}{c} \pm & 5.0 \\ \pm & 0.6 \\ \pm 2000.0 \\ \pm & 5.0 \\ \pm 1800.0 \\ \pm & 6.0 \\ \pm & 180.0 \\ \pm & 0.46 \end{array}$	³) 4)	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	<pre>[1] [1,3] [1] [3] [1] [1] [1] [1] [4] 4)</pre>
63-Eu-151 152 153 154g 155	σ(total) σ 1 σ. σ.	4.2 3211.0 5935.0 9146.0 2800.0 312.0 1500.0 4040.0 3950.0	$\begin{array}{ccccc} \pm & 2.0 \\ \pm & 82.0 \\ \pm & 73.0 \\ \pm & 109.0 \\ \pm & 600. \\ \pm & 7.0 \\ \pm & 400.0 \\ \pm & 125.0 \\ \pm & 125.0 \end{array}$	⁵) ⁶) ⁶)	1823.0 ± 146.0 3552.0 ± 264.0 5367.0 ± 263.0 2170.0 1420.0 ± 100.0 1500.0 ± 450.0 1680.0 ± 300.0 C 23200.0 \pm 300.0	[1] [1] [6] [3] ⁵) [1] [1] [3] ⁶)

- ¹) Original value in [1] = 1045 \pm 265 b, adjusted here (within the error limits) to give the correct sum (m+g).
- ²) Te higher value of [1] is supported by the data from JENDL-3 (2199 b) and ENDF/B-6 (2197 b), whereas [3] gives 2064 \pm 100 b.
- ³) [3] used, as uncertainty is given. Other values: 334.5 b [1], 420.2 b (JENDL-3), 330 b (ENDF/B-6).
- ⁴) Taken from [4] because of discrepancies between [1] and [3].

⁵) [1] gives 603 and 3414 b respectively, but recent evaluations ([4], ENDF/B-6) support the lower values.

⁶) Both sets of data given for comparison. Other values: ENDF/B-6: same as [3], JENDL-3: 4071 b and 6755 b respectively.

SECTION C: FISSION PRODUCT YIELDS

The tables contain yield sets from the US and UK evaluated fission yield files, which result from the presently largest evaluation efforts. This is in accordance with the recommendations of an IAEA Coordinated Research Programme on the Compilation and Evaluation of Fission Yield Nuclear Data that not a single set of fission yields should be recommended. A third file of fission yield data from China is presently being revised; it is expected that it can be included in the future.

C-1: Chain yields and selected cumulative yields

Fission yields are given for thermal neutron fission of U-233,235, Pu-239,241 and for fast neutron fission of Th-232 and U-238. The Tables contain cumulative and chain yields $\geq 0.01-0.001$ %. In addition, the most important ternary fission yields are presented. Cumulative yields are given seperatly only if they differ significantly from the respective chain yields, or for some important fission products to show the (even small) difference.

Description of table entries:

FP: Chain yields are indicated by "A=". Otherwise the nuclide is listed for which the cumulative yield is given.

The fission yield values are given in percent per fission and tabulated in 2 different representations as extracted from the files:

US file: fixed point numbers and relative errors (in %) UK file: floating point numbers and absolute errors

Source of data:

US file: ENDF/B-6 Fission Yield File UK file: R.W. Mills, "UKFY3", the latest update of the UK library of independent and cumulative fission product yields, in ENDF-6 format (1996). The file UKFY3 contains also several other tables of fission yield data and discrepances.

Both the US file and the UK file are available on magnetic tape from the Data Centers.

FP	US file	error (%)	UK file	error
Н – З			7.0030- 3	2.2139- 3
He- 3			7.0081- 3	2.2139- 3
He- 4			1.0164- 1	3.1047- 2
A= 77	0.011765	8.	1.0903- 2	2.6793- 3
A= 78	0.03528	11.	3.2701- 2	1.0566- 2
A= 79	0.076873	11.	8.8309- 2	2.6661- 2
A= 80	0.194213	16.	2.1836- 1	6.5647- 2
A= 81	0.469835	11.	5.0116- 1	1.5023- 1
A= 82	1.075426	16.	1.0746+ 0	3.0393- 1
A= 83	2.169280	2.0	1.9980+ 0	4.2049- 1
A= 84	4.026097	1.4	4.4033+ 0	7.2294- 1
Kr-85	0.8334	1.4	9.9431- 1	2.3040- 1

Table	C-1.1:	Th-232	fast	fission
-------	--------	--------	------	---------

FP	US file	error (१)	UK file	error
A= 85	4.167428	1.4	4.6596+ 0	8.7907- 1
A= 86	6.587601	2.0	6.9370+ 0	1.1514+ 0
A= 87	7.073593	2.8	6.7234+ 0	1.2404+ 0
A= 88	7.260427	2.0	6.9651+ 0	1.2050+ 0
A= 89	7.467815	2.8	7.3129+ 0	1.0932+ 0
A= 90	7.924058	4.0	8.0327+ 0	1.2038+ 0
A= 91	7.363992	2.0	7.0022+ 0	8.5668- 1
A= 92	6.920399	2.8	7.1301+ 0	1.3574+ 0
A= 93	6.697280	4.0	6.1532+ 0	1.1564+ 0
A= 94	5.562996	4.0	5.5177+ 0	8.8801- 1
A= 95	5.652666	2.0	5.6274+ 0	8.9501- 1
A= 96	4.776764	16.	5.0207+ 0	1.3514+ 0
A= 97	4.425500	2.0	4.3891+ 0	8.6974- 1
A= 98	3.680042	6.	3.5875+ 0	9.7598- 1
A= 99	2.944060	2.0	2.8882+ 0	4.5217~ 1
A=100	1.370638	6.	1.6104+ 0	5.1890- 1
A=101	0.713542	11.	8.1881- 1	2.7335- 1
A=102	0.367805	11.	3.6240- 1	9.2444- 2
A=103	0.155461	4.0	1.5417- 1	9.1892- 3
A=104	0.090313	11.	8.7640- 2	2.1156- 2
A=105	0.051481	2.8	7.0452- 2	2.6677- 3
A=106	0.048561	8.	5.4287- 2	6.8126- 3
A=107	0.051075	11.	5.3308- 2	1.4256- 2
A=108	0.061347	16.	5.3368- 2	1.7554- 2
A=109	0.066215	4.0	5.3076- 2	1.6976- 3
A=110	0.070997	16.	5.8727-2	1.7396- 2
A=111	0.071619	6.	6.4551- 2	1.5117- 2
A=112	0.078263	6.	6.8870- 2	1.6900- 2
A=113	0.078066	4.0	6.8001- 2	2.2248- 2
A=114	0.073423	16.	6.7013- 2	2 2151- 2
A=115	0.077003	2.8	6.5799- 2	1.7689- 2
A=116	0.073801	16.	6.7917- 2	2.1911- 2
A=117	0.073822	2.8	6.8008- 2	2.1917 - 2
A=117 A=118	0.063281	11.	6.7678- 2	2.1940- 2
A=119	0.057210	16.	6.6878-2	1.8948- 2
A=120	0.054327	16.	6.5682-2	1.5725- 2
A=121	0.048821	6.	6.4106- 2	2.0746- 2
A=122	0.036527	16.	6.2161- 2	1.9943- 2
A=123	0.029354	16.	5.9945- 2	1.9410- 2
A=124	0.026475	16.	5.7677- 2	1.8689- 2
A=125	0.032954	11.	5.6283- 2	1.8254- 2
A=125 A=126	0.048129	11. 16.	5.9543-2	1.9303- 2
A=120 A=127	0.101355	4.0	8.0179-2	1.4860- 2
A=127 A=128	0.182599	16.	1.7189- 1	5.5112- 2
A=120 A=129	0.252076	4.0	4.5684 - 1	1.9401 - 1
A=129 A=130	0.945582	4.0	4.5684- 1 9.0836- 1	2.7901- 1
Xe-131m	0.022692	4.0	1.6682- 2	2.7551- 3
A=131	1.620949	4.0 2.0	1.5445+0	2.7551- 3
A=132 Xe-133m	2.968856	1.4	2.6562+0	4.2986- 1
VC . TO 210	0.1165	4.0	1.3399- 1	2.1319- 2

FP	US file	error (%)	UK file	error
A=133	4.046220	2.0	4.6516+ 0	7.2172- 1
A=134	5.351795	2.0	5.8608+ 0	8.8907- 1
Xe-135m	0.8187	4.0	8.9306- 1	1.5385- 1
Xe-135	5.5280	2.0	5.7023+ 0	9.9094- 1
A=135	5.528784	2.0	5.7026+ 0	8.8759- 1
A=136	5.621469	2.0	5.6481+ 0	8.1524- 1
A=137	5.839457	4.0	6.5851+ 0	1.2133+ 0
A=138	6.449821	6.	6.3826+ 0	1.0056+ 0
A=139	7.096623	2.0	7.3978+ 0	1.1414+ 0
A=140	7.877878	2.0	7.7204+ 0	1.2160+ 0
A=141	7.463862	2.8	7.0915+ 0	9.7706- 2
A=142	6.540381	2.8	6.3190+ 0	1.3528+ 0
A=143	6.647205	2.0	6.2965+ 0	1.0190+ 0
A=144	7.916097	2.8	7.2697+ 0	1.1770+ 0
A=145	5.338663	2.0	5.1219+ 0	8.8866- 1
A=146	4.554332	2.8	3.6439+ 0	9.8019- 1
A=147	2.978662	2.8	2.8614+ 0	1.6487- 1
A=148	2.005246	2.8	1.8882+ 0	3.5169- 1
A=149	1.083641	4.0	1.1366+ 0	2.7409- 1
A=150	0.561977	23.	8.9271- 1	3.3157- 1
A=151	0.363657	6.	4.0995- 1	8.8839- 2
A=152	0.075545	16.	3.1624- 1	1.0866- 1
A=153	0.031009	11.	2.0441- 1	4.8310- 2
A=154	0.006876	23.	6.3121- 2	2.0881- 2
A=155	0.003617	23.	1.5829- 2	5.1861- 3
A=156	0.002690	8.	2.5201- 3	7.0574- 4
A=157	0.000932	23.	8.6279-4	3.6382- 4

Table C-1.2: U-233 thermal fission

FP	US file	error (१)	UK file	error
н - 2			8.4660- 4	2.2832- 4
He- 3			9.6910- 3	2.3320- 3
A= 75	0.007981	23.	0.6584- 3	0.1001- 3
A= 76	0.013847	23.	1.7072- 2	2.4978- 3
A= 77	0.025959	16.	4.1328- 2	5.2760- 3
A= 78	0.053838	16.	6.6576-2	8.6450- 3
A= 79	0.143515	16.	1.3472- 1	1.7242- 2
A= 80	0.234071	16.	2.6259- 1	3.3735- 2
A= 81	0.367786	4.	3.8190- 1	5.0796- 2
A= 82	0.586339	2.8	5.9895- 1	8.0280- 2
A= 83	1.014543	1.0	1.0827+ 0	1.4597- 1
A= 84	1.689426	1.0	1.6937+ 0	2.2116- 1
Kr-85	0.52340	0.35	5.2674- 1	7.2449- 2
A= 85	2.237148	1.0	2.1956+ 0	2.9347- 1
A= 86	2.844415	1.4	3.0777+ 0	4.0054- 1
A= 87	4.018205	1.4	4.0428+ 0	4.8337- 1

A=101 3.171242 1.4 $3.2493+0$ $4.3151-1$ A=102 2.402804 1.0 $2.4643+0$ $3.2791-1$ A=103 1.573207 $2.$ $1.4597+0$ $1.9100-1$ A=104 0.980193 $2.$ $9.5898-1$ $1.3127-2$ A=105 0.495809 2.8 $4.9628-1$ $6.5199-2$ A=106 0.246245 $2.$ $2.4968-1$ $3.2990-2$ A=107 0.114532 $4.$ $1.1498-1$ $1.6312-2$ A=108 0.075767 $4.$ $7.8859-2$ $1.1238-2$ A=109 0.039405 $16.$ $4.1746-2$ $6.0542-3$ A=110 0.038664 $4.$ $3.9207-2$ $5.5531-3$ A=111 0.021600 $8.$ $2.4458-2$ $3.5046-3$ A=112 0.013304 $8.$ $1.4221-2$ $2.0306-3$ A=113 0.013562 $11.$ $1.7884-2$ $2.7912-3$ A=114 0.012860 $11.$ $1.7651-2$ $2.7065-3$ A=115 0.014982 $6.$ $1.8971-2$ $2.6071-3$ A=116 0.013202 $16.$ $1.7651-2$ $2.1887-3$ A=117 0.014982 $6.$ $1.5955-2$ $2.1935-3$ A=120 0.021829 $8.$ $1.7653-2$ $2.3884-3$ A=120 0.021829 $8.$ $1.7653-2$ $2.3884-3$ A=121 0.02082 $8.$ $1.8586-2$ $2.6069-3$ A=122 0.040969 $8.$ $1.9598-2$ $2.7501-3$ A=124 0.074624 $16.$ $3.2291-2$ 4.4			- 45	-	
A= 896.3401651.46.2179+ 07.9010- 1A= 906.7890721.46.7451+ 08.7165- 1A= 916.4859571.06.5631+ 07.7747- 1A= 926.5524451.06.4868+ 07.9808- 1A= 946.8313451.46.7049+ 08.8899- 1Zr-956.34902.6.2669+ 08.1974- 1Nb-95m0.0635242.6.9731- 29.1198- 3A= 956.3496051.005.6549+ 07.6178- 1A= 965.6789621.005.5004+ 06.7437- 1A= 975.5157461.005.5004+ 06.6600- 1A= 985.1893121.005.1883+ 06.6600- 1A= 994.9109731.45.0432+ 06.5972- 1A=1004.4590391.44.4144+ 05.8134- 1A=1013.1712421.43.2493+ 04.3151- 1A=1022.4028041.002.4643+ 03.2791- 1A=1031.5732072.1.4597+ 01.9100- 1A=1040.9801932.9.5898- 11.3127- 2A=1050.4958092.84.9628- 16.5199- 2A=1060.2462452.2.4968- 13.2990- 2A=1070.1145324.1.1498- 11.6312- 2A=1080.0757674.7.8859- 21.1238- 2A=1090.03940516.4.1746- 26.0542- 3A=1100.0216008.2.4458- 23.5046- 3A=113	FP	US file		UK file	error
A=90 6.789072 1.4 $6.7451+0$ $8.7165-1$ A=91 6.485957 1.0 $6.5631+0$ $7.7747-1$ A=92 6.552445 1.0 $6.4868+0$ $7.9808-1$ A=93 6.978996 1.0 $6.7946+0$ $8.7873-1$ A=94 6.831345 1.4 $6.7049+0$ $8.8898-1$ Zr-95 6.3490 $2.$ $6.2669+0$ $8.1974-1$ Nb-95m 0.063524 $2.$ $6.2678+0$ $8.4540-1$ A=95 6.349605 1.0 $6.2678+0$ $8.4540-1$ A=97 5.515746 1.0 $5.5649+0$ $7.6178-1$ A=98 5.189312 1.0 $5.1883+0$ $6.6600-1$ A=99 4.910973 1.4 $5.0432+0$ $6.5972-1$ A=100 4.459039 1.4 $4.4144+0$ $5.8134-1$ A=101 3.171242 1.4 $3.2493+0$ $4.3151-1$ A=103 1.573207 $2.$ $1.4637+0$ $1.9100-1$ A=104 0.980193 $2.$ $2.5898-1$ $1.3127-2$ A=105 0.495809 2.8 $4.9628-1$ $6.5199-2$ A=106 0.246245 $2.$ $2.4458-3$ $3.2907-2$ $5.5531-3$ $3.2910-2$ 3.24936 $1.6312-2$ A=109 0.039405 $16.$ $4.1746-2$ $6.0542-3$ $A=110$ 0.038664 $4.$ $3.9207-2$ $5.5531-3$ $A=110$ 0.013562 $11.$ $1.5813-2$ $2.4853-3$ $A=111$ 0.012860 $11.$ $1.7651-2$ $2.7065-3$	A= 88	5.465197	1.4	5.5670+ 0	6.8688- 1
A= 916.4859571.06.5631+ 07.7747- 1A= 926.5524451.06.4868+ 07.9808- 1A= 936.9789961.06.7946+ 08.7873- 1A= 946.8313451.46.7049+ 08.8898- 1Zr-956.34902.6.2669+ 08.1974- 1Nb-95m0.0635242.6.9731- 29.1198- 3A= 956.3496051.05.6549+ 07.6178- 1A= 965.6789621.05.6549+ 07.6178- 1A= 975.5157461.05.5004+ 06.660-1A= 985.1893121.05.1883+ 06.660-1A= 994.9109731.44.4144+ 05.8134- 1A=1013.1712421.43.2493+ 04.3151- 1A=1022.4028041.02.4643+ 03.2791- 1A=1031.5732072.1.4597+ 01.9100- 1A=1040.9601332.9.5898- 11.3127- 2A=1050.4958092.84.9628- 16.5199- 2A=1060.2462452.2.4968- 13.2990- 2A=1070.1145324.1.1498- 11.6312- 2A=1080.0757674.7.8859- 21.1238- 2A=1090.03940516.4.1746- 22.0306- 3A=1100.01356211.1.5813- 22.4853- 3A=1110.01286011.1.7781- 22.0306- 3A=1120.0133048.1.4221- 22.0306- 3A=1130.013	A= 89	6.340165	1.4	6.2179+ 0	7.9010- 1
A=92 6.552445 1.0 $6.4868+$ 0 $7.9808 1$ A=93 6.978996 1.0 $6.7946+$ 0 $8.7873 1$ A=94 6.831345 1.4 $6.7049+$ 0 $8.8988 1$ $2r-95$ 6.34900 $2.$ $6.2669+$ 0 $8.1974 1$ Nb-95m 0.063524 $2.$ $6.9731 2$ $9.1198 3$ A=95 6.349605 1.0 $5.6549+$ 0 $7.6178 1$ A=96 5.678962 1.0 $5.6549+$ 0 $7.6178 1$ A=97 5.515746 1.0 $5.5004+$ 0 $6.7437 1$ A=98 5.189312 1.0 $5.1883+$ 0 $6.6600-1$ 1 A=99 4.910973 1.4 $5.0432+$ 0 $6.5972-1$ 1 A=101 3.171242 1.4 $3.2493+$ 0 $4.3151-1$ A=102 2.402804 1.0 $2.4643+$ 0 $3.2791-1$ A=103 1.573207 $2.$ $1.4597+$ 0 $1.9100-1$ A=104 0.980193 $2.$ $9.598-1$ $1.3127-$ A=105 0.495809 2.8 $4.9628-1$ $6.5199-$ A=106 0.246245 $2.$ $2.4968-1$ $3.2990-2$ A=107 0.114532 $4.$ $1.1498-1$ $1.6312-2$ A=108 0.075767 $4.$ $7.8859-2$ $1.1238-2$ A=109 0.039405 $16.$ $4.1746-2$ $6.0542-3$ A=11	A= 90	6.789072	1.4	6.7451+ 0	8.7165- 1
A= 936.9789961.06.7946+08.7873-1A= 946.8313451.46.7049+08.8898-1Zr-956.34902.6.2669+08.1974-1Nb-95m0.0635242.6.9731-29.1198-3A= 956.3496051.06.2678+008.4540-1A= 965.6789621.05.56549+07.6178-1A= 975.5157461.05.5004+06.7437-1A= 985.1893121.05.1883+06.6600-1A= 994.9109731.45.0432+06.5972-1A=1004.4590391.44.4144+05.8134-1A=1013.1712421.43.2493+04.3151-1A=1022.4028041.02.4643+03.2791-1A=1031.5732072.1.4597+01.9100-1A=1040.9801932.9.5898-11.3127-2A=1050.4958092.84.9628-16.5199-2A=1060.2462452.2.4068-13.22990-2A=1070.1145324.1.1498-11.6312-2A=1090.03940516.4.1746-26.0542-3A=1100.0386644.3.9207-25.5531-3A=1110.01286011.1.7384-22.7912-3A=1120.013048.1.4221-22.0067-3A=1140.01286011.1.7651-22.1887-3A=1150.0149826.1.8971-22.6671-3A=1160.013202 </td <td>A= 91</td> <td>6.485957</td> <td>1.0</td> <td>6.5631+ 0</td> <td>7.7747- 1</td>	A= 91	6.485957	1.0	6.5631+ 0	7.7747- 1
A=94 6.831345 1.4 $6.7049+0$ $8.889e-1$ $2r-95$ 6.3490 $2.$ $6.2669+0$ $8.1974-1$ $Nb-95m$ 0.063524 $2.$ $6.9731-2$ $9.1198-3$ $A=95$ 6.349605 1.00 $5.6549+0$ $7.6178-1$ $A=96$ 5.678962 1.00 $5.6549+0$ $6.6600-1$ $A=97$ 5.515746 1.00 $5.5004+0$ $6.7437-1$ $A=98$ 5.189312 1.00 $5.1883+0$ $6.6600-1$ $A=99$ 4.910973 1.4 $5.0432+0$ $6.5972-1$ $A=100$ 4.459039 1.4 $4.4144+0$ $5.8134-1$ $A=101$ 3.171242 1.4 $3.2493+0$ $4.3151-1$ $A=102$ 2.402804 1.00 $2.4643+0$ $3.2791-1$ $A=103$ 1.573207 $2.$ $1.4597+0$ $1.9100-1$ $A=104$ 0.980193 $2.$ $2.4968-1$ $3.2990-2$ $A=105$ 0.495809 2.8 $4.9628-1$ $6.5199-2$ $A=106$ 0.246245 $2.$ $2.4968-1$ $3.2990-2$ $A=107$ 0.114532 $4.$ $1.1498-1$ $1.6312-2$ $A=108$ 0.075767 $4.$ $7.8859-2$ $1.1238-2$ $A=109$ 0.039405 $16.$ $4.1746-2$ $6.0542-3$ $A=110$ 0.038664 $4.$ $3.9207-2$ $5.5531-3$ $A=110$ 0.013562 $11.$ $1.7651-2$ $2.7055-3$ $A=113$ 0.013562 $11.$ $1.5681-2$ $2.6071-3$ $A=114$ 0.012860	A= 92	6.552445	1.0	6.4868+ 0	7.9808- 1
Zr-95 6.3490 2. $6.2669+ 0$ $8.1974- 1$ Nb-95m 0.063524 2. $6.9731- 2$ $9.1198- 3$ A= 95 6.349605 1.0 $5.6549+ 0$ $7.6178- 1$ A= 96 5.678962 1.0 $5.6549+ 0$ $7.6178- 1$ A= 97 5.515746 1.0 $5.5004+ 0$ $6.7437- 1$ A= 98 5.189312 1.0 $5.1883+ 0$ $6.6600- 1$ A= 99 4.910973 1.4 $5.0432+ 0$ $6.5972- 1$ A=100 4.459039 1.4 $4.4144+ 0$ $5.8134- 1$ A=101 3.171242 1.4 $3.2493+ 0$ $4.3151- 1$ A=102 2.402804 1.0 $2.4643+ 0$ $3.2791- 1$ A=103 1.573207 $2.$ $1.4597+ 0$ $1.9100- 1$ A=104 0.980193 $2.$ $9.598- 1$ $1.3127- 2$ A=105 0.495809 2.8 $4.9628- 1$ $6.5199- 2$ A=106 0.246245 $2.$ $2.496e- 1$ $3.2990- 2$ A=107 0.114532 $4.$ $1.1498- 1$ $1.6312- 2$ A=108 0.075767 $4.$ $7.8859- 2$ $1.1238- 2$ A=109 0.039405 $16.$ $4.1746- 2$ $6.0542- 3$ A=110 0.038664 $4.$ $3.9207- 2$ $5.5531- 3$ A=110 0.013562 $11.$ $1.7651- 2$ $2.7055- 3$ A=114 0.012860 $11.$ $1.7651- 2$ $2.7055- 3$ A=115 0.014982 $6.$ $1.8971- 2$ $2.6071- 3$ A=116 0.012492 <td>A= 93</td> <td>6.978996</td> <td>1.0</td> <td>6.7946+ 0</td> <td>8.7873- 1</td>	A= 93	6.978996	1.0	6.7946+ 0	8.7873- 1
Nb-95m 0.063524 $2.$ $6.9731-2$ $9.1198-3$ A= 95 6.349605 1.0 $6.2678+0$ $8.4540-1$ A= 96 5.678962 1.0 $5.6549+0$ $7.6178-1$ A= 97 5.515746 1.0 $5.5004+0$ $6.7437-1$ A= 98 5.189312 1.0 $5.1883+0$ $6.6600-1$ A= 99 4.910973 1.4 $5.0432+0$ $6.5972-1$ A=100 3.171242 1.4 $3.2493+0$ $4.3151-1$ A=101 3.171242 1.4 $3.2493+0$ $4.3151-1$ A=102 2.402804 1.0 $2.4643+0$ $3.2791-1$ A=103 1.573207 $2.$ $1.4597+0$ $1.9100-1$ A=104 0.980193 $2.$ $9.5898-1$ $1.3127-2$ A=105 0.495809 2.8 $4.9628-1$ $6.5199-2$ A=106 0.246245 $2.$ $2.4968-1$ $3.2990-2$ A=107 0.114532 $4.$ $1.1498-1$ $1.6312-2$ A=108 0.075767 $4.$ $7.8859-2$ $1.238-2$ A=110 0.038664 $4.$ $3.9207-2$ $5.5531-3$ A=111 0.013562 $11.$ $1.784-2$ $2.7912-3$ A=112 0.013904 $8.$ $1.4221-2$ $2.0306-3$ A=113 0.012860 $11.$ $1.7651-2$ $2.7065-3$ A=114 0.012860 $11.$ $1.7651-2$ $2.7912-3$ A=113 0.014982 $6.$ $1.8971-2$ $2.884-3$ A=114 0.012860 $11.$ $1.7653-2$	A= 94	6.831345	1.4	6.7049+ 0	8.8898- 1
A=95 6.349605 1.0 $6.2678+0$ $8.4540-1$ A=96 5.678962 1.0 $5.6549+0$ $7.6178-1$ A=97 5.515746 1.0 $5.5004+0$ $6.7437-1$ A=98 5.189312 1.0 $5.1883+0$ $6.6600-1$ A=99 4.910973 1.4 $5.0432+0$ $6.5972-1$ A=100 4.459039 1.4 $4.4144+0$ $5.8134-1$ A=101 3.171242 1.4 $3.2493+0$ $4.3151-1$ A=102 2.402804 1.0 $2.4643+0$ $3.2791-1$ A=103 1.573207 $2.$ $1.4597+0$ $1.9100-1$ A=104 0.980193 $2.$ $9.5898-1$ $1.3127-2$ A=105 0.495809 2.8 $4.9628-1$ $6.5199-2$ A=106 0.246245 $2.$ $2.4968-1$ $3.2990-2$ A=107 0.114532 $4.$ $1.1498-1$ $1.6312-2$ A=108 0.075767 $4.$ $7.8859-2$ $1.1238-2$ A=109 0.039405 $16.$ $4.1746-2$ $6.0542-3$ A=111 0.021600 $8.$ $2.4458-2$ $3.5046-3$ A=112 0.013304 $8.$ $1.4221-2$ $2.0306-3$ A=113 0.014962 $6.$ $1.8971-2$ $2.6071-3$ A=114 0.012860 $11.$ $1.7384-2$ $2.7912-3$ A=114 0.01492 $6.$ $1.8971-2$ $2.0671-3$ A=114 0.01492 $6.$ $1.8971-2$ $2.0671-3$ A=120 0.021829 $8.$ $1.7653-2$ 2.3884	Zr-95	6.3490	2.	6.2669+ 0	8.1974- 1
A=96 5.678962 1.0 $5.6549+0$ $7.6178-1$ A=97 5.515746 1.0 $5.5004+0$ $6.7437-1$ A=98 5.189312 1.0 $5.1883+0$ $6.6600-1$ A=99 4.910973 1.4 $5.0432+0$ $6.5972-1$ A=100 4.459039 1.4 $4.4144+0$ $5.8134-1$ A=101 3.171242 1.4 $3.2493+0$ $4.3151-1$ A=102 2.402804 1.00 $2.4643+0$ $3.2791-1$ A=103 1.573207 $2.$ $1.4597+0$ $1.9100-1$ A=104 0.980193 $2.$ $9.5898-1$ $1.3127-2$ A=105 0.495809 2.8 $4.9628-1$ $3.2990-2$ A=106 0.246245 $2.$ $2.4968-1$ $3.2990-2$ A=107 0.114532 $4.$ $1.1498-1$ $1.6312-2$ A=108 0.075767 $4.$ $7.8859-2$ $1.1238-2$ A=109 0.039405 $16.$ $4.1746-2$ $6.0542-3$ A=110 0.038664 $4.$ $3.9207-2$ $5.5531-3$ A=112 0.013562 $11.$ $1.7384-2$ $2.94853-3$ A=114 0.012600 $8.$ $1.4421-2$ $2.0306-3$ A=115 0.014982 $6.$ $1.8971-2$ $2.6071-3$ A=116 0.013202 $16.$ $1.7651-2$ $2.7065-3$ A=117 0.014982 $6.$ $1.8595-2$ $2.1935-3$ A=120 0.021802 $8.$ $1.8586-2$ $2.6069-3$ A=120 0.023082 $8.$ $1.6573-2$ 2	Nb-95m	0.063524	2.	6.9731- 2	9.1198- 3
A= 97 5.515746 1.0 $5.5004+0$ $6.7437-1$ A= 98 5.189312 1.0 $5.1883+0$ $6.6600-1$ A= 99 4.910973 1.4 $5.0432+0$ $6.5972-1$ A=100 4.459039 1.4 $4.4144+0$ $5.8134-1$ A=101 3.171242 1.4 $3.2493+0$ $4.3151-1$ A=102 2.402804 1.00 $2.4643+0$ $3.2791-1$ A=103 1.573207 $2.$ $1.4597+0$ $1.9100-1$ A=104 0.980193 $2.$ $9.5898-1$ $1.3127-2$ A=105 0.495809 2.8 $4.9628-1$ $6.5199-2$ A=106 0.246245 $2.$ $2.4968-1$ $3.2990-2$ A=107 0.114532 $4.$ $1.1498-1$ $1.6312-2$ A=108 0.075767 $4.$ $7.8859-2$ $1.1238-2$ A=109 0.039405 $16.$ $4.1746-2$ $6.0542-3$ A=110 0.038664 $4.$ $3.9207-2$ $5.5531-3$ A=111 0.021600 $8.$ $2.4458-2$ $3.5046-3$ A=112 0.013304 $8.$ $1.4221-2$ $2.0306-3$ A=113 0.012660 $11.$ $1.7384-2$ $2.7912-3$ A=114 0.012860 $11.$ $1.5813-2$ $2.4853-3$ A=114 0.012860 $11.$ $1.5681-2$ $2.1887-3$ A=114 0.012860 $11.$ $1.5681-2$ $2.1887-3$ A=120 0.021829 $8.$ $1.7653-2$ $2.3884-3$ A=120 0.021829 $8.$ $1.6535-2$ <t< td=""><td>A= 95</td><td>6.349605</td><td>1.0</td><td>6.2678+ 0</td><td>8.4540- 1</td></t<>	A= 95	6.349605	1.0	6.2678+ 0	8.4540- 1
A= 97 5.515746 1.0 $5.5004+0$ $6.7437-1$ A= 98 5.189312 1.0 $5.1883+0$ $6.6600-1$ A= 99 4.910973 1.4 $5.0432+0$ $6.5972-1$ A=100 4.459039 1.4 $4.4144+0$ $5.8134-1$ A=101 3.171242 1.4 $3.2493+0$ $4.3151-1$ A=102 2.402804 1.00 $2.4643+0$ $3.2791-1$ A=103 1.573207 $2.$ $1.4597+0$ $1.9100-1$ A=104 0.980193 $2.$ $9.5898-1$ $1.3127-2$ A=105 0.495809 2.8 $4.9628-1$ $6.5199-2$ A=106 0.246245 $2.$ $2.4968-1$ $3.2990-2$ A=107 0.114532 $4.$ $1.1498-1$ $1.6312-2$ A=108 0.075767 $4.$ $7.8859-2$ $1.1238-2$ A=109 0.039405 $16.$ $4.1746-2$ $6.0542-3$ A=110 0.038664 $4.$ $3.9207-2$ $5.5531-3$ A=112 0.013562 $11.$ $1.5813-2$ $2.4853-3$ A=113 0.013562 $11.$ $1.5813-2$ $2.4853-3$ A=114 0.012860 $11.$ $1.7651-2$ $2.7065-3$ A=115 0.014982 $6.$ $1.8971-2$ $2.6071-3$ A=116 0.015417 $11.$ $1.5681-2$ $2.1887-3$ A=117 0.014124 $11.$ $1.5515-2$ $2.1935-3$ A=120 0.023022 $8.$ $1.7653-2$ $2.3884-3$ A=120 0.021809 $8.$ $1.9598-2$ <	A= 96	5.678962	1.0	5.6549+ 0	7.6178- 1
A= 985.1893121.05.1883+ 06.6600-1A= 994.9109731.45.0432+ 06.5972-1A=1004.4590391.44.4144+ 05.8134-1A=1013.1712421.43.2493+ 04.3151-1A=1022.4028041.02.4643+ 03.2791-1A=1031.5732072.1.4597+ 01.9100-1A=1040.9801932.9.5898-11.3127-2A=1050.4958092.84.9628-16.5199-2A=1060.2462452.2.4968-13.2990-2A=1070.1145324.1.1498-11.6312-2A=1080.0757674.7.8859-21.1238-2A=1090.03940516.4.1746-26.0542-3A=1100.0386644.3.9207-25.5531-3A=1120.0133048.1.4221-22.0306-3A=1130.01356211.1.5813-22.4853-3A=1140.01286011.1.7384-22.7912-3A=1150.0149826.1.8971-22.6071-3A=1140.01286011.1.5681-22.1887-3A=1140.01286111.1.5213-22.1179-3A=1150.0149826.1.8971-22.6071-3A=1200.0218298.1.7653-22.3884-3A=1200.01855816.1.5955-22.1935-3A=1200.0218298.1.7653-22.3884-3A=1210.0230828.1.8586-2 <t< td=""><td>A= 97</td><td>5.515746</td><td>1.0</td><td></td><td>6.7437- 1</td></t<>	A= 97	5.515746	1.0		6.7437- 1
A=99 4.910973 1.4 $5.0432+$ 0 $6.5972-1$ A=100 4.459039 1.4 $4.4144+$ 0 $5.8134-1$ A=101 3.171242 1.4 $3.2493+$ 0 $4.3151-1$ A=102 2.402804 1.00 $2.4643+$ 0 $3.2791-1$ A=103 1.573207 $2.$ $1.4597+$ 0 $1.9100-1$ A=104 0.980193 $2.$ $9.5898-1$ $1.3127-2$ A=105 0.495809 2.8 $4.9628-1$ $6.5199-2$ A=106 0.246245 $2.$ $2.4968-1$ $3.2990-2$ A=107 0.114532 $4.$ $1.1498-1$ $1.6312-2$ A=108 0.075767 $4.$ $7.8859-2$ $1.1238-2$ A=109 0.039405 $16.$ $4.1746-2$ $6.0542-3$ A=110 0.038664 $4.$ $3.9207-2$ $5.5531-3$ A=111 0.021600 $8.$ $2.4458-2$ $3.5046-3$ A=112 0.013304 $8.$ $1.4221-2$ $2.0306-3$ A=113 0.013562 $11.$ $1.5813-2$ $2.4853-3$ A=114 0.012860 $11.$ $1.7651-2$ $2.7065-3$ A=115 0.014982 $6.$ $1.8971-2$ $2.6071-3$ A=116 0.013202 $16.$ $1.7651-2$ $2.1887-3$ A=120 0.021829 $8.$ $1.7653-2$ $2.3884-3$ A=120 0.021829 $8.$ $1.7653-2$ $2.3884-3$ A=121 0.023082 $8.$ $1.8586-2$ $2.6069-3$ A=123 <t< td=""><td>A= 98</td><td>5.189312</td><td>1.0</td><td>5.1883+ 0</td><td></td></t<>	A= 98	5.189312	1.0	5.1883+ 0	
A=1004.4590391.44.4144+05.8134-1A=101 3.171242 1.4 $3.2493+$ 0 $4.3151-$ 1A=102 2.402804 1.0 $2.4643+$ 0 $3.2791-$ 1A=103 1.573207 2. $1.4597+$ 0 $1.9100-$ 1A=104 0.980193 2. $9.5898-$ 1 $1.3127-$ 2A=105 0.495809 2.8 $4.9628-$ 1 $6.5199-$ 2A=106 0.246245 2. $2.4968-$ 1 $3.2990-$ 2A=107 0.114532 4. $1.1498-$ 1 $1.6312-$ 2A=108 0.075767 4. $7.8859-$ 2 $1.1238-$ 2A=109 0.039405 16. $4.1746-$ 2 $6.0542-$ 3A=110 0.038664 4. $3.9207-$ 2 $5.5531-$ 3A=111 0.021600 8. $2.4458 2.35046-$ 3A=112 0.013562 11. $1.5813 2.4853 3.5046-$ A=114 0.012860 11. $1.7384 2.7912 3.7912-$ A=114 0.012860 11. $1.7581 2.6071 3.7912-$ A=116 0.013202 16. $1.7651 2.2.888 3.8412 0.014982$ 6. $1.8971 2.2.8084 3.8412 A=120$ 0.021829 8. $1.7653 2.3884 A=120$ 0.021829 8. $1.7653 2.3884 A=123$ 0.06	A= 99	4.910973		5.0432+ 0	
A=101 3.171242 1.4 $3.2493+0$ $4.3151-1$ A=102 2.402804 1.0 $2.4643+0$ $3.2791-1$ A=103 1.573207 $2.$ $1.4597+0$ $1.9100-1$ A=104 0.980193 $2.$ $9.5898-1$ $1.3127-2$ A=105 0.495809 2.8 $4.9628-1$ $6.5199-2$ A=106 0.246245 $2.$ $2.4968-1$ $3.2990-2$ A=107 0.114532 $4.$ $1.1498-1$ $1.6312-2$ A=108 0.075767 $4.$ $7.8859-2$ $1.1238-2$ A=109 0.039405 $16.$ $4.1746-2$ $6.0542-3$ A=110 0.038664 $4.$ $3.9207-2$ $5.5531-3$ A=111 0.021600 $8.$ $2.4458-2$ $3.5046-3$ A=112 0.013304 $8.$ $1.4221-2$ $2.0306-3$ A=113 0.012600 $8.$ $2.4458-2$ $3.5046-3$ A=114 0.012860 $11.$ $1.7384-2$ $2.7912-3$ A=115 0.014982 $6.$ $1.8971-2$ $2.6071-3$ A=116 0.013202 $16.$ $1.7651-2$ $2.7065-3$ A=117 0.014124 $11.$ $1.5213-2$ $2.1179-3$ A=118 0.015417 $11.$ $1.5681-2$ $2.1887-3$ A=120 0.021829 $8.$ $1.8586-2$ $2.6069-3$ A=121 0.020382 $8.$ $1.8586-2$ $2.6069-3$ A=122 0.060415 $23.$ $2.2279-2$ $3.4803-3$ A=124 0.074624 $16.$ $3.2291-2$	A=100	4.459039			
A=1022.4028041.02.4643+03.2791-1A=103 1.573207 2. $1.4597+$ 0 $1.9100-$ 1A=104 0.980193 2. $9.5898 1.3127-$ 2A=105 0.495809 2.8 $4.9628 1.65199-$ 2A=106 0.246245 2. $2.4968 1.32990-$ 2A=107 0.114532 4. $1.1498 1.6312-$ 2A=108 0.075767 4. $7.8859 2.1238-$ 2A=109 0.039405 $16.$ $4.1746 2.6.0542-$ 3A=110 0.038664 4. $3.9207 2.55531 3$ A=110 0.038664 4. $3.9207 2.55531 3$ A=111 0.021600 8. $2.4458 2.3066 3$ A=112 0.013304 8. $1.4221 2.0306 3$ A=113 0.012860 $11.$ $1.7384 2.7912 3$ A=116 0.013202 $16.$ $1.7651 2.2.7065 3$ A=117 0.014124 $11.$ $1.5213 2.1887 3$ A=119 0.018558 $16.$ $1.5955 2.1935 3$ A=120 0.021829 $8.$ $1.7653 2.3884 3$ A=120 0.021829 $8.$ $1.634 1.6378 2.3607-$ A=124 0.074624 $16.$ $3.2291 2.4093 3$ A=125 0.116962 $8.$ $1.1634 1.6378-$ </td <td>A=101</td> <td></td> <td></td> <td></td> <td></td>	A=101				
A=103 1.573207 $2.$ $1.4597+0$ $1.9100-1$ A=104 0.980193 $2.$ $9.5898-1$ $1.3127-2$ A=105 0.495809 2.8 $4.9628-1$ $6.5199-2$ A=106 0.246245 $2.$ $2.4968-1$ $3.2990-2$ A=107 0.114532 $4.$ $1.1498-1$ $1.6312-2$ A=108 0.075767 $4.$ $7.8859-2$ $1.1238-2$ A=109 0.039405 $16.$ $4.1746-2$ $6.0542-3$ A=110 0.038664 $4.$ $3.9207-2$ $5.5531-3$ A=111 0.021600 $8.$ $2.4458-2$ $3.5046-3$ A=112 0.013304 $8.$ $1.4221-2$ $2.0306-3$ A=113 0.013562 $11.$ $1.7384-2$ $2.7912-3$ A=114 0.012860 $11.$ $1.7384-2$ $2.7912-3$ A=115 0.014982 $6.$ $1.8971-2$ $2.6071-3$ A=116 0.013202 $16.$ $1.7651-2$ $2.7065-3$ A=117 0.014124 $11.$ $1.5213-2$ $2.1179-3$ A=118 0.015417 $11.$ $1.5681-2$ $2.3884-3$ A=120 0.021829 $8.$ $1.7653-2$ $2.3884-3$ A=121 0.023082 $8.$ $1.632-12$ $3.4803-3$ A=122 0.040969 $8.$ $1.634-1$ $1.6378-2$ A=123 0.060415 $23.$ $2.2279-2$ $3.4803-3$ A=124 0.074624 $16.$ $3.2291-2$ $4.4093-3$ A=125 0.116962 $8.$ $1.1634-1$ $1.$					
A=104 0.980193 $2.$ $9.5898-1$ $1.3127-2$ A=105 0.495809 2.8 $4.9628-1$ $6.5199-2$ A=106 0.246245 $2.$ $2.4968-1$ $3.2990-2$ A=107 0.114532 $4.$ $1.1498-1$ $1.6312-2$ A=108 0.075767 $4.$ $7.8859-2$ $1.1238-2$ A=109 0.039405 $16.$ $4.1746-2$ $6.0542-3$ A=110 0.038664 $4.$ $3.9207-2$ $5.5531-3$ A=111 0.021600 $8.$ $2.4458-2$ $3.5046-3$ A=112 0.013304 $8.$ $1.4221-2$ $2.0306-3$ A=113 0.013562 $11.$ $1.5813-2$ $2.4853-3$ A=114 0.012860 $11.$ $1.7384-2$ $2.7912-3$ A=115 0.014982 $6.$ $1.8971-2$ $2.6071-3$ A=116 0.013202 $16.$ $1.7651-2$ $2.7065-3$ A=117 0.014124 $11.$ $1.5213-2$ $2.1179-3$ A=118 0.015417 $11.$ $1.5681-2$ $2.1887-3$ A=120 0.021829 $8.$ $1.7653-2$ $2.3884-3$ A=121 0.023082 $8.$ $1.632-12$ $2.6069-3$ A=122 0.040969 $8.$ $1.9598-2$ $2.7501-3$ A=123 0.060415 $23.$ $2.2279-2$ $3.4803-3$ A=124 0.074624 $16.$ $3.2291-2$ $4.4093-3$ A=125 0.116962 $8.$ $1.1634-1$ $1.6378-2$ A=126 0.226118 $8.$ $2.3308-1$ 3					
A=1050.4958092.84.9628-16.5199-2A=1060.2462452.2.4968-13.2990-2A=1070.1145324.1.1498-11.6312-2A=1080.0757674.7.8859-21.1238-2A=1090.03940516.4.1746-26.0542-3A=1100.0386644.3.9207-25.5531-3A=1110.0216008.2.4458-23.5046-3A=1120.0133048.1.4221-22.0306-3A=1130.01356211.1.5813-22.4853-3A=1140.01286011.1.7384-22.7912-3A=1150.0149826.1.8971-22.6071-3A=1160.01320216.1.7651-22.7065-3A=1170.01412411.1.5681-22.1887-3A=1180.01541711.1.5681-22.1887-3A=1200.0218298.1.7653-22.3884-3A=1210.0230828.1.8586-22.6069-3A=1220.0409698.1.9598-22.7501-3A=1230.06041523.2.2279-23.4803-3A=1240.07462416.3.2291-24.4093-3A=1250.1169628.1.1634-11.6378-2A=1260.2261188.2.3308-13.6234-2A=1291.59133716.1.5983+02.3691-1A=1302.09163211.2.5002+03.7061-1Xe-131m0.0504862.83.8458-25.					
A=106 0.246245 $2.$ $2.4968-1$ $3.2990-2$ $A=107$ 0.114532 $4.$ $1.1498-1$ $1.6312-2$ $A=108$ 0.075767 $4.$ $7.8859-2$ $1.1238-2$ $A=109$ 0.039405 $16.$ $4.1746-2$ $6.0542-3$ $A=110$ 0.038664 $4.$ $3.9207-2$ $5.5531-3$ $A=111$ 0.021600 $8.$ $2.4458-2$ $3.5046-3$ $A=112$ 0.013304 $8.$ $1.4221-2$ $2.0306-3$ $A=113$ 0.013562 $11.$ $1.5813-2$ $2.4853-3$ $A=114$ 0.012860 $11.$ $1.7384-2$ $2.7912-3$ $A=116$ 0.013202 $16.$ $1.7651-2$ $2.7065-3$ $A=116$ 0.014982 $6.$ $1.8971-2$ $2.6071-3$ $A=116$ 0.01424 $11.$ $1.5213-2$ $2.1179-3$ $A=116$ 0.01424 $11.$ $1.5581-2$ $2.1887-3$ $A=117$ 0.014124 $11.$ $1.5681-2$ $2.1887-3$ $A=118$ 0.015417 $11.$ $1.5681-2$ $2.3884-3$ $A=120$ 0.021829 $8.$ $1.7653-2$ $2.3884-3$ $A=120$ 0.021829 $8.$ $1.9598-2$ $2.7501-3$ $A=122$ 0.040969 $8.$ $1.9598-2$ $2.7501-3$ $A=123$ 0.060415 $23.$ $2.2279-2$ $3.4803-3$ $A=124$ 0.074624 $16.$ $3.2291-2$ $4.4093-3$ $A=126$ 0.226118 $8.$ $2.3308-1$ $3.6234-2$ $A=126$ 0.226118					
A=107 0.114532 $4.$ $1.1498-1$ $1.6312-2$ $A=108$ 0.075767 $4.$ $7.8859-2$ $1.1238-2$ $A=109$ 0.039405 $16.$ $4.1746-2$ $6.0542-3$ $A=110$ 0.038664 $4.$ $3.9207-2$ $5.5531-3$ $A=111$ 0.021600 $8.$ $2.4458-2$ $3.5046-3$ $A=112$ 0.013304 $8.$ $1.4221-2$ $2.0306-3$ $A=113$ 0.013562 $11.$ $1.5813-2$ $2.4853-3$ $A=114$ 0.012860 $11.$ $1.7384-2$ $2.7912-3$ $A=115$ 0.014982 $6.$ $1.8971-2$ $2.6071-3$ $A=116$ 0.013202 $16.$ $1.7651-2$ $2.7065-3$ $A=117$ 0.014124 $11.$ $1.5213-2$ $2.1179-3$ $A=118$ 0.015417 $11.$ $1.5681-2$ $2.1887-3$ $A=119$ 0.018558 $16.$ $1.5955-2$ $2.1935-3$ $A=120$ 0.021829 $8.$ $1.7653-2$ $2.3884-3$ $A=121$ 0.023082 $8.$ $1.8586-2$ $2.6069-3$ $A=122$ 0.040969 $8.$ $1.9598-2$ $2.7501-3$ $A=124$ 0.074624 $16.$ $3.2291-2$ $4.4093-3$ $A=124$ 0.050					
A=108 0.075767 $4.$ $7.8859-2$ $1.1238-2$ $A=109$ 0.039405 $16.$ $4.1746-2$ $6.0542-3$ $A=110$ 0.038664 $4.$ $3.9207-2$ $5.5531-3$ $A=111$ 0.021600 $8.$ $2.4458-2$ $3.5046-3$ $A=112$ 0.013304 $8.$ $1.4221-2$ $2.0306-3$ $A=113$ 0.013562 $11.$ $1.5813-2$ $2.4853-3$ $A=114$ 0.012860 $11.$ $1.7384-2$ $2.7912-3$ $A=115$ 0.014982 $6.$ $1.8971-2$ $2.6071-3$ $A=116$ 0.013202 $16.$ $1.7651-2$ $2.7065-3$ $A=116$ 0.013202 $16.$ $1.7651-2$ $2.1887-3$ $A=117$ 0.014124 $11.$ $1.5681-2$ $2.1887-3$ $A=119$ 0.018558 $16.$ $1.5955-2$ $2.1935-3$ $A=120$ 0.021829 $8.$ $1.7653-2$ $2.3884-3$ $A=121$ 0.023082 $8.$ $1.8586-2$ $2.6069-3$ $A=122$ 0.040969 $8.$ $1.9598-2$ $2.7501-3$ $A=123$ 0.060415 $23.$ $2.2279-2$ $3.4803-3$ $A=124$ 0.074624 $16.$ $3.2291-2$ $4.4093-3$ $A=124$ 0.055457 $11.$ $4.6784-1$ $1.0573-1$ $A=129$ 1.59					
A=109 0.039405 $16.$ $4.1746-2$ $6.0542-3$ $A=110$ 0.038664 $4.$ $3.9207-2$ $5.5531-3$ $A=111$ 0.021600 $8.$ $2.4458-2$ $3.5046-3$ $A=112$ 0.013304 $8.$ $1.4221-2$ $2.0306-3$ $A=112$ 0.013562 $11.$ $1.5813-2$ $2.4853-3$ $A=113$ 0.013562 $11.$ $1.7384-2$ $2.7912-3$ $A=114$ 0.012860 $11.$ $1.7384-2$ $2.7912-3$ $A=115$ 0.014982 $6.$ $1.8971-2$ $2.6071-3$ $A=116$ 0.013202 $16.$ $1.7651-2$ $2.7065-3$ $A=117$ 0.014124 $11.$ $1.5213-2$ $2.1179-3$ $A=118$ 0.015417 $11.$ $1.5681-2$ $2.1887-3$ $A=119$ 0.018558 $16.$ $1.5955-2$ $2.1935-3$ $A=120$ 0.021829 $8.$ $1.7653-2$ $2.3884-3$ $A=121$ 0.023082 $8.$ $1.8586-2$ $2.6069-3$ $A=122$ 0.040969 $8.$ $1.9598-2$ $2.7501-3$ $A=123$ 0.060415 $23.$ $2.2279-2$ $3.4803-3$ $A=124$ 0.074624 $16.$ $3.2291-2$ $4.4093-3$ $A=124$ 0.074624 $16.$ $3.2291-2$ $4.4093-3$ $A=124$ 0.074624 $16.$ $3.2291-2$ $3.4803-3$ $A=124$ 0.074624 $16.$ $3.2291-2$ $4.4093-3$ $A=124$ 0.074624 $16.$ $3.2291-2$ $4.6034-2$ $A=127$ 0.5					
A=1100.0386644.3.9207-25.5531-3A=1110.0216008.2.4458-23.5046-3A=1120.0133048.1.4221-22.0306-3A=1130.01356211.1.5813-22.4853-3A=1140.01286011.1.7384-22.7912-3A=1150.0149826.1.8971-22.6071-3A=1160.01320216.1.7651-22.7065-3A=1170.01412411.1.5213-22.1179-3A=1180.01541711.1.5681-22.1887-3A=1200.0218298.1.7653-22.3884-3A=1210.0230828.1.8586-22.6069-3A=1230.06041523.2.2279-23.4803-3A=1240.07462416.3.2291-24.4093-3A=1250.1169628.1.1634-11.6378-2A=1260.2261188.2.3308-13.6234-2A=1291.59133716.1.5983+02.3691-1A=1302.09163211.2.5002+03.7061-1Xe-131m0.0504862.83.8458-25.1343-3A=1313.6043000.73.5522+04.7420-1R=1324.9535590.74.8366+06.2961-1					
A=111 0.021600 8. $2.4458-2$ $3.5046-3$ A=112 0.013304 8. $1.4221-2$ $2.0306-3$ A=113 0.013562 $11.$ $1.5813-2$ $2.4853-3$ A=114 0.012860 $11.$ $1.7384-2$ $2.7912-3$ A=115 0.014982 $6.$ $1.8971-2$ $2.6071-3$ A=116 0.013202 $16.$ $1.7651-2$ $2.7065-3$ A=117 0.014124 $11.$ $1.5213-2$ $2.1179-3$ A=118 0.015417 $11.$ $1.5681-2$ $2.1887-3$ A=120 0.021829 $8.$ $1.7653-2$ $2.3884-3$ A=121 0.023082 $8.$ $1.8586-2$ $2.6069-3$ A=122 0.040969 $8.$ $1.9598-2$ $2.7501-3$ A=123 0.060415 $23.$ $2.2279-2$ $3.4803-3$ A=124 0.074624 $16.$ $3.2291-2$ $4.4093-3$ A=125 0.116962 $8.$ $1.1634-1$ $1.6378-2$ A=126 0.226118 $8.$ $2.3308-1$ $3.6234-2$ A=127 0.555457 $11.$ $4.6784-1$ $1.0573-1$ A=128 0.836918 $8.$ $9.2148-1$ $1.3405-1$ A=130 2.091632 $11.$ $2.5002+0$ $3.7061-1$ Xe-131m 0.050486 2.8 $3.8458-2$ $5.1343-3$ A=131 3.604300 0.7 $3.5522+0$ $4.7420-1$ Te-132 4.7590 2.8 $4.6234+0$ $6.0620-1$ A=132 4.953559 0.7 $4.8366+0$]			
A=112 0.013304 $8.$ $1.4221-2$ $2.0306-3$ $A=113$ 0.013562 $11.$ $1.5813-2$ $2.4853-3$ $A=114$ 0.012860 $11.$ $1.7384-2$ $2.7912-3$ $A=115$ 0.014982 $6.$ $1.8971-2$ $2.6071-3$ $A=116$ 0.013202 $16.$ $1.7651-2$ $2.7065-3$ $A=117$ 0.014124 $11.$ $1.5213-2$ $2.1179-3$ $A=118$ 0.015417 $11.$ $1.5681-2$ $2.1887-3$ $A=119$ 0.018558 $16.$ $1.5955-2$ $2.1935-3$ $A=120$ 0.021829 $8.$ $1.7653-2$ $2.3884-3$ $A=121$ 0.023082 $8.$ $1.8586-2$ $2.6069-3$ $A=122$ 0.040969 $8.$ $1.9598-2$ $2.7501-3$ $A=123$ 0.060415 $23.$ $2.2279-2$ $3.4803-3$ $A=124$ 0.074624 $16.$ $3.2291-2$ $4.4093-3$ $A=124$ 0.074624 $16.$ $3.2291-2$ $4.4093-3$ $A=126$ 0.226118 $8.$ $2.3308-1$ $3.6234-2$ $A=126$ 0.226118 $8.$ $2.3308-1$ $3.6234-2$ $A=129$ 1.591337 $16.$ $1.5983+0$ $2.3691-1$ $A=130$ 2.091632 $11.$ $2.5002+0$ $3.7061-1$ $Xe-131m$ 0.050486 2.8 $3.8458-2$ $5.1343-3$ $A=131$ 3.604300 0.7 $3.5522+0$ $4.7420-1$ $A=132$ 4.953559 0.7 $4.8366+0$ $6.2961-1$		1			
A=113 0.013562 $11.$ $1.5813-2$ $2.4853-3$ A=114 0.012860 $11.$ $1.7384-2$ $2.7912-3$ A=115 0.014982 $6.$ $1.8971-2$ $2.6071-3$ A=116 0.013202 $16.$ $1.7651-2$ $2.7065-3$ A=117 0.014124 $11.$ $1.5213-2$ $2.1179-3$ A=118 0.015417 $11.$ $1.5681-2$ $2.1887-3$ A=119 0.018558 $16.$ $1.5955-2$ $2.1935-3$ A=120 0.021829 $8.$ $1.7653-2$ $2.3884-3$ A=121 0.023082 $8.$ $1.8586-2$ $2.6069-3$ A=122 0.040969 $8.$ $1.9598-2$ $2.7501-3$ A=123 0.060415 $23.$ $2.2279-2$ $3.4803-3$ A=124 0.074624 $16.$ $3.2291-2$ $4.4093-3$ A=125 0.116962 $8.$ $1.1634-1$ $1.6378-2$ A=126 0.226118 $8.$ $2.3308-1$ $3.6234-2$ A=127 0.555457 $11.$ $4.6784-1$ $1.0573-1$ A=128 0.836918 $8.$ $9.2148-1$ $1.3405-1$ A=130 2.091632 $11.$ $2.5002+0$ $3.7061-1$ Xe-131m 0.050486 2.8 $3.8458-2$ $5.1343-3$ A=131 3.604300 0.7 $3.5522+0$ $4.7420-1$ Te-132 4.953559 0.7 $4.8366+0$ $6.2961-1$					
A=114 0.012860 $11.$ $1.7384-2$ $2.7912-3$ $A=115$ 0.014982 $6.$ $1.8971-2$ $2.6071-3$ $A=116$ 0.013202 $16.$ $1.7651-2$ $2.7065-3$ $A=117$ 0.014124 $11.$ $1.5213-2$ $2.1179-3$ $A=118$ 0.015417 $11.$ $1.5681-2$ $2.1887-3$ $A=119$ 0.018558 $16.$ $1.5955-2$ $2.1935-3$ $A=120$ 0.021829 $8.$ $1.7653-2$ $2.3884-3$ $A=121$ 0.023082 $8.$ $1.8586-2$ $2.6069-3$ $A=122$ 0.040969 $8.$ $1.9598-2$ $2.7501-3$ $A=123$ 0.060415 $23.$ $2.2279-2$ $3.4803-3$ $A=124$ 0.074624 $16.$ $3.2291-2$ $4.4093-3$ $A=125$ 0.116962 $8.$ $1.1634-1$ $1.6378-2$ $A=126$ 0.226118 $8.$ $2.3308-1$ $3.6234-2$ $A=126$ 0.226118 $8.$ $9.2148-1$ $1.3405-1$ $A=129$ 1.591337 $16.$ $1.5983+0$ $2.3691-1$ $A=130$ 2.091632 $11.$ $2.5002+0$ $3.7061-1$ $Xe-131m$ 0.050486 2.8 $3.8458-2$ $5.1343-3$ $A=131$ 3.604300 0.7 $3.5522+0$ $4.7420-1$ $A=132$ 4.953559 0.7 $4.8366+0$ $6.2961-1$					
A=115 0.014982 $6.$ $1.8971-2$ $2.6071-3$ A=116 0.013202 $16.$ $1.7651-2$ $2.7065-3$ A=117 0.014124 $11.$ $1.5213-2$ $2.1179-3$ A=118 0.015417 $11.$ $1.5681-2$ $2.1887-3$ A=119 0.018558 $16.$ $1.5955-2$ $2.1935-3$ A=120 0.021829 $8.$ $1.7653-2$ $2.3884-3$ A=121 0.023082 $8.$ $1.8586-2$ $2.6069-3$ A=122 0.040969 $8.$ $1.9598-2$ $2.7501-3$ A=123 0.060415 $23.$ $2.2279-2$ $3.4803-3$ A=124 0.074624 $16.$ $3.2291-2$ $4.4093-3$ A=125 0.116962 $8.$ $1.1634-1$ $1.6378-2$ A=126 0.226118 $8.$ $2.3308-1$ $3.6234-2$ A=127 0.555457 $11.$ $4.6784-1$ $1.0573-1$ A=128 0.836918 $8.$ $9.2148-1$ $1.3405-1$ A=130 2.091632 $11.$ $2.5002+0$ $3.7061-1$ Xe-131m 0.050486 2.8 $3.8458-2$ $5.1343-3$ A=131 3.604300 0.7 $3.5522+0$ $4.7420-1$ Te-132 4.953559 0.7 $4.8366+0$ $6.2961-1$					
A=116 0.013202 16. $1.7651-2$ $2.7065-3$ A=117 0.014124 11. $1.5213-2$ $2.1179-3$ A=118 0.015417 11. $1.5681-2$ $2.1887-3$ A=119 0.018558 16. $1.5955-2$ $2.1935-3$ A=120 0.021829 8. $1.7653-2$ $2.3884-3$ A=121 0.023082 8. $1.8586-2$ $2.6069-3$ A=122 0.040969 8. $1.9598-2$ $2.7501-3$ A=123 0.060415 $23.$ $2.2279-2$ $3.4803-3$ A=124 0.074624 16. $3.2291-2$ $4.4093-3$ A=125 0.116962 8. $1.1634-1$ $1.6378-2$ A=126 0.226118 8. $2.3308-1$ $3.6234-2$ A=127 0.555457 $11.$ $4.6784-1$ $1.0573-1$ A=128 0.836918 8. $9.2148-1$ $1.3405-1$ A=129 1.591337 $16.$ $1.5983+0$ $2.3691-1$ A=130 2.091632 $11.$ $2.5002+0$ $3.7061-1$ Xe-131m 0.050486 2.8 $3.8458-2$ $5.1343-3$ A=131 3.604300 0.7 $3.5522+0$ $4.7420-1$ A=132 4.953559 0.7 $4.8366+0$ $6.2961-1$					
A=1170.01412411.1.5213-22.1179-3A=1180.01541711.1.5681-22.1887-3A=1190.01855816.1.5955-22.1935-3A=1200.0218298.1.7653-22.3884-3A=1210.0230828.1.8586-22.6069-3A=1220.0409698.1.9598-22.7501-3A=1230.06041523.2.2279-23.4803-3A=1240.07462416.3.2291-24.4093-3A=1250.1169628.1.1634-11.6378-2A=1260.2261188.2.3308-13.6234-2A=1270.55545711.4.6784-11.0573-1A=1280.8369188.9.2148-11.3405-1A=1302.09163211.2.5002+03.7061-1Xe-131m0.0504862.83.8458-25.1343-3A=1313.6043000.73.5522+04.7420-1A=1324.9535590.74.8366+06.2961-1					
A=118 0.015417 $11.$ $1.5681-2$ $2.1887-3$ $A=119$ 0.018558 $16.$ $1.5955-2$ $2.1935-3$ $A=120$ 0.021829 $8.$ $1.7653-2$ $2.3884-3$ $A=121$ 0.023082 $8.$ $1.8586-2$ $2.6069-3$ $A=122$ 0.040969 $8.$ $1.9598-2$ $2.7501-3$ $A=123$ 0.060415 $23.$ $2.2279-2$ $3.4803-3$ $A=124$ 0.074624 $16.$ $3.2291-2$ $4.4093-3$ $A=125$ 0.116962 $8.$ $1.1634-1$ $1.6378-2$ $A=126$ 0.226118 $8.$ $2.3308-1$ $3.6234-2$ $A=127$ 0.555457 $11.$ $4.6784-1$ $1.0573-1$ $A=128$ 0.836918 $8.$ $9.2148-1$ $1.3405-1$ $A=129$ 1.591337 $16.$ $1.5983+0$ $2.3691-1$ $A=130$ 2.091632 $11.$ $2.5002+0$ $3.7061-1$ $Xe-131m$ 0.050486 2.8 $3.8458-2$ $5.1343-3$ $A=131$ 3.604300 0.7 $3.5522+0$ $4.7420-1$ $Te-132$ 4.7590 2.8 $4.6234+0$ $6.0620-1$ $A=132$ 4.953559 0.7 $4.8366+0$ $6.2961-1$					
A=119 0.018558 16. $1.5955-2$ $2.1935-3$ A=120 0.021829 $8.$ $1.7653-2$ $2.3884-3$ A=121 0.023082 $8.$ $1.8586-2$ $2.6069-3$ A=122 0.040969 $8.$ $1.9598-2$ $2.7501-3$ A=123 0.060415 $23.$ $2.2279-2$ $3.4803-3$ A=124 0.074624 16. $3.2291-2$ $4.4093-3$ A=125 0.116962 $8.$ $1.1634-1$ $1.6378-2$ A=126 0.226118 $8.$ $2.3308-1$ $3.6234-2$ A=127 0.555457 $11.$ $4.6784-1$ $1.0573-1$ A=128 0.836918 $8.$ $9.2148-1$ $1.3405-1$ A=129 1.591337 $16.$ $1.5983+0$ $2.3691-1$ A=130 2.091632 $11.$ $2.5002+0$ $3.7061-1$ Xe-131m 0.050486 2.8 $3.8458-2$ $5.1343-3$ A=131 3.604300 0.7 $3.5522+0$ $4.7420-1$ Te-132 4.7590 2.8 $4.6234+0$ $6.0620-1$ A=132 4.953559 0.7 $4.8366+0$ $6.2961-1$					
A=120 0.021829 $8.$ $1.7653-2$ $2.3884-3$ $A=121$ 0.023082 $8.$ $1.8586-2$ $2.6069-3$ $A=122$ 0.040969 $8.$ $1.9598-2$ $2.7501-3$ $A=123$ 0.060415 $23.$ $2.2279-2$ $3.4803-3$ $A=124$ 0.074624 $16.$ $3.2291-2$ $4.4093-3$ $A=125$ 0.116962 $8.$ $1.1634-1$ $1.6378-2$ $A=126$ 0.226118 $8.$ $2.3308-1$ $3.6234-2$ $A=127$ 0.555457 $11.$ $4.6784-1$ $1.0573-1$ $A=128$ 0.836918 $8.$ $9.2148-1$ $1.3405-1$ $A=129$ 1.591337 $16.$ $1.5983+0$ $2.3691-1$ $A=130$ 2.091632 $11.$ $2.5002+0$ $3.7061-1$ $Xe-131m$ 0.050486 2.8 $3.8458-2$ $5.1343-3$ $A=131$ 3.604300 0.7 $3.5522+0$ $4.7420-1$ $Te-132$ 4.7590 2.8 $4.6234+0$ $6.0620-1$ $A=132$ 4.953559 0.7 $4.8366+0$ $6.2961-1$					
A=121 0.023082 $8.$ $1.8586-2$ $2.6069-3$ $A=122$ 0.040969 $8.$ $1.9598-2$ $2.7501-3$ $A=123$ 0.060415 $23.$ $2.2279-2$ $3.4803-3$ $A=124$ 0.074624 $16.$ $3.2291-2$ $4.4093-3$ $A=125$ 0.116962 $8.$ $1.1634-1$ $1.6378-2$ $A=126$ 0.226118 $8.$ $2.3308-1$ $3.6234-2$ $A=127$ 0.555457 $11.$ $4.6784-1$ $1.0573-1$ $A=128$ 0.836918 $8.$ $9.2148-1$ $1.3405-1$ $A=129$ 1.591337 $16.$ $1.5983+0$ $2.3691-1$ $A=130$ 2.091632 $11.$ $2.5002+0$ $3.7061-1$ $Xe-131m$ 0.050486 2.8 $3.8458-2$ $5.1343-3$ $A=131$ 3.604300 0.7 $3.5522+0$ $4.7420-1$ $Te-132$ 4.7590 2.8 $4.6234+0$ $6.0620-1$ $A=132$ 4.953559 0.7 $4.8366+0$ $6.2961-1$					
A=122 0.040969 $8.$ $1.9598-2$ $2.7501-3$ $A=123$ 0.060415 $23.$ $2.2279-2$ $3.4803-3$ $A=124$ 0.074624 $16.$ $3.2291-2$ $4.4093-3$ $A=125$ 0.116962 $8.$ $1.1634-1$ $1.6378-2$ $A=126$ 0.226118 $8.$ $2.3308-1$ $3.6234-2$ $A=127$ 0.555457 $11.$ $4.6784-1$ $1.0573-1$ $A=128$ 0.836918 $8.$ $9.2148-1$ $1.3405-1$ $A=129$ 1.591337 $16.$ $1.5983+0$ $2.3691-1$ $A=130$ 2.091632 $11.$ $2.5002+0$ $3.7061-1$ $Xe-131m$ 0.050486 2.8 $3.8458-2$ $5.1343-3$ $A=131$ 3.604300 0.7 $3.5522+0$ $4.7420-1$ $Te-132$ 4.7590 2.8 $4.6234+0$ $6.0620-1$ $A=132$ 4.953559 0.7 $4.8366+0$ $6.2961-1$					
A=123 0.060415 $23.$ $2.2279-2$ $3.4803-3$ $A=124$ 0.074624 $16.$ $3.2291-2$ $4.4093-3$ $A=125$ 0.116962 $8.$ $1.1634-1$ $1.6378-2$ $A=126$ 0.226118 $8.$ $2.3308-1$ $3.6234-2$ $A=127$ 0.555457 $11.$ $4.6784-1$ $1.0573-1$ $A=128$ 0.836918 $8.$ $9.2148-1$ $1.3405-1$ $A=129$ 1.591337 $16.$ $1.5983+0$ $2.3691-1$ $A=130$ 2.091632 $11.$ $2.5002+0$ $3.7061-1$ $Xe-131m$ 0.050486 2.8 $3.8458-2$ $5.1343-3$ $A=131$ 3.604300 0.7 $3.5522+0$ $4.7420-1$ $Te-132$ 4.7590 2.8 $4.6234+0$ $6.0620-1$ $A=132$ 4.953559 0.7 $4.8366+0$ $6.2961-1$					
A=124 0.074624 $16.$ $3.2291-2$ $4.4093-3$ $A=125$ 0.116962 $8.$ $1.1634-1$ $1.6378-2$ $A=126$ 0.226118 $8.$ $2.3308-1$ $3.6234-2$ $A=127$ 0.555457 $11.$ $4.6784-1$ $1.0573-1$ $A=128$ 0.836918 $8.$ $9.2148-1$ $1.3405-1$ $A=129$ 1.591337 $16.$ $1.5983+0$ $2.3691-1$ $A=130$ 2.091632 $11.$ $2.5002+0$ $3.7061-1$ $Xe-131m$ 0.050486 2.8 $3.8458-2$ $5.1343-3$ $A=131$ 3.604300 0.7 $3.5522+0$ $4.7420-1$ $Te-132$ 4.7590 2.8 $4.6234+0$ $6.0620-1$ $A=132$ 4.953559 0.7 $4.8366+0$ $6.2961-1$					
A=1250.1169628.1.1634-11.6378-2A=1260.2261188.2.3308-13.6234-2A=1270.55545711.4.6784-11.0573-1A=1280.8369188.9.2148-11.3405-1A=1291.59133716.1.5983+02.3691-1A=1302.09163211.2.5002+03.7061-1Xe-131m0.0504862.83.8458-25.1343-3A=1313.6043000.73.5522+04.7420-1Te-1324.75902.84.6234+06.0620-1A=1324.9535590.74.8366+06.2961-1			ŀ		
A=1260.2261188.2.3308-13.6234-2A=1270.55545711.4.6784-11.0573-1A=1280.8369188.9.2148-11.3405-1A=1291.59133716.1.5983+02.3691-1A=1302.09163211.2.5002+03.7061-1Xe-131m0.0504862.83.8458-25.1343-3A=1313.6043000.73.5522+04.7420-1Te-1324.75902.84.6234+06.0620-1A=1324.9535590.74.8366+06.2961-1					
A=1270.55545711.4.6784-11.0573-1A=1280.8369188.9.2148-11.3405-1A=1291.59133716.1.5983+02.3691-1A=1302.09163211.2.5002+03.7061-1Xe-131m0.0504862.83.8458-25.1343-3A=1313.6043000.73.5522+04.7420-1Te-1324.75902.84.6234+06.0620-1A=1324.9535590.74.8366+06.2961-1					
A=1280.8369188.9.2148-11.3405-1A=1291.59133716.1.5983+02.3691-1A=1302.09163211.2.5002+03.7061-1Xe-131m0.0504862.83.8458-25.1343-3A=1313.6043000.73.5522+04.7420-1Te-1324.75902.84.6234+06.0620-1A=1324.9535590.74.8366+06.2961-1			ſ		
A=1291.59133716.1.5983+02.3691-1A=1302.09163211.2.5002+03.7061-1Xe-131m0.0504862.83.8458-25.1343-3A=1313.6043000.73.5522+04.7420-1Te-1324.75902.84.6234+06.0620-1A=1324.9535590.74.8366+06.2961-1					
A=1302.09163211.2.5002+03.7061-1Xe-131m0.0504862.83.8458-25.1343-3A=1313.6043000.73.5522+04.7420-1Te-1324.75902.84.6234+06.0620-1A=1324.9535590.74.8366+06.2961-1			1		
Xe-131m0.0504862.83.8458-25.1343-3A=1313.6043000.73.5522+04.7420-1Te-1324.75902.84.6234+06.0620-1A=1324.9535590.74.8366+06.2961-1					
A=1313.6043000.73.5522+04.7420-1Te-1324.75902.84.6234+06.0620-1A=1324.9535590.74.8366+06.2961-1					
Te-132 4.7590 2.8 4.6234+ 0 6.0620- 1 A=132 4.953559 0.7 4.8366+ 0 6.2961- 1					
A=132 4.953559 0.7 4.8366+ 0 6.2961- 1	A=131				
	Te-132			4.6234+ 0	
Xe-133m 0.2111 23. 2.0210-1 2.7491-2	A=132		0.7	4.8366+ 0	6.2961- 1
	Xe-133m	0.2111	23.	2.0210- 1	2.7491- 2

- 46 -

FP	US file	error (%)	UK file	error
Xe-133	5.950	2.	6.0874+ 0	7.6723- 1
A=133	5.950570	1.	6.0875+ 0	7.6965- 1
A=134	6.306880	0.7	6.4101+ 0	8.0917- 1
I -135	5.0320	2.8	4.3758+ 0	6.4814- 1
Xe-135m	1.5460	32.	1.5009+ 0	2.6336- 1
Xe-135	6.2590	2.	5.5384+ 0	7.1027- 1
A=135	6.265223	1.4	5.5546+ 0	7.1527- 1
A=136	6.905353	1.0	7.4858+ 0	8.8505- 1
Cs-137	6.7540	0.7	6.5728+ 0	7.6218- 1
A=137	6.757385	0.7	6.5817+ 0	8.0489- 1
A=138	5.907377	2.	6.1540+ 0	7.7550- 1
A=139	6.305604	2.8	5.8658+ 0	7.5325- 1
Ba-140	6.3980	2.8	6.6076+ 0	7.6218- 1
La-140	6.4250	2.	6.6259+ 0	8.3741- 1
A=140	6.424816	1.4	6.6259+ 0	8.4053- 1
A=141	6.480480	2.8	6.4182+ 0	7.7017- 1
A=142	6.670707	1.4	6.8314+ 0	8.4422- 1
A=143	5.965845	0.7	5.9521+ 0	7.6507- 1
Ce-144	4.7260	2.	4.6524+ 0	6.0243- 1
A=144	4.726134	0.7	4.6535+ 0	6.1579- 1
A=145	3.444062	1.	3.4002+ 0	4.5515- 1
A=146	2.585897	0.7	2.5361+ 0	3.3931- 1
A=147	1.738401	2.8	1.8101+ 0	2.4065- 1
A=148	1.301585	1.	1.2918+ 0	1.7585- 1
A=149	0.778134	2.8	7.6062- 1	1.0506- 1
A=150	0.505712	1.4	4.7745- 1	6.6778- 2
A=151	0.315725	2.	3.1932- 1	4.5602- 2
A=152	0.213639	2.8	1.8370- 1	2.7026- 2
A=153	0.103685	6.	1.1144- 1	1.9513- 2
A=154	0.046690	2.8	4.2773- 2	6.4437- 3
A=155	0.021430	16.	2.1866- 2	3.6923- 3
A=156	0.012794	6.	1.0885- 2	1.5961- 3
A=157	0.006302	8.	6.8821- 3	9.9967- 4
A=158	0.002055	23.	2.6497- 3	4.2155- 4
A=159	0.000886	6.	9.5497- 4	1.3575- 4

Table 1.3: U-235 thermal fission

.

FP	US file	error (%)	UK file	error
H - 1			1.7110- 3	2.9483- 4
н – 2			8.4000- 4	2.4389- 4
н – З			9.3140- 3	5.3176- 4
He- 3			9.3140- 3	5.3176- 4
He- 4			1.6990- 1	9.5049- 3
A= 77	0.007961	8.	8.3895- 3	6.0364- 4
A= 78	0.020966	8.	2.0322- 2	9.1351- 4
A= 79	0.044732	6.	4.7151- 2	3.6568- 3

	- 47 -					
FP	US file	error (%)	UK file	error		
A= 80	0.128832	4.	1.2657- 1	5.6480- 3		
A= 81	0.203680	2.8	1.9757- 1	9.0481- 3		
A= 82	0.324569	2.8	3.2904- 1	1.3406- 2		
A= 83	0.536435	0.5	5.5742- 1	2.2571- 2		
A= 84	1.002093	0.7	1.0025+ 0	4.7142- 2		
Kr-85	0.2834	0.35	2.8728- 1	1.5098- 2		
A= 85	1.318713	0.35	1.3287+ 0	6.1233- 2		
A= 86	1.965113	0.5	1.9686+ 0	7.6887- 2		
A= 87	2.560298	0.5	2.5438+ 0	1.8613- 1		
A= 88	3.575006	0.7	3.5088+ 0	1.6668- 1		
A= 89	4.733074	1.0	4.7820+ 0	1.9254- 1		
A= 90	5.782353	1.0	5.8089+ 0	2.2460- 1		
A= 91	5.828245	0.7	5.8951+ 0	5.0951-1		
A≈ 92	6.021674	0.7	6.0110+ 0	4.7126- 1		
A= 93	6.346743	0.7	6.3404+ 0	2.7652- 1		
A= 94	6.472653	0.7	6.5010+ 0	2.5392-1		
A= 95	6.503326	0.7	6.5570+ 0	2.5435-1		
A= 96	6.340230	1.0	6.3005+ 0	2.4538-1		
A= 97	5.997223	0.7	5.9378+ 0	4.5412- 1		
A≕ 98	5.790300	0.7	5.7651+ 0	2.7767-1		
A= 99	6.109164	1.0	6.1594+ 0	2.3650- 1		
A= 100	6.292781	0.7	6.2316+ 0	2.3674-1		
A=101	5.172919	1.0	5.1492+ 0	1.9908- 1		
A=102	4.298778	1.0	4.2701+ 0	1.6691- 1		
A=103	3.031149	1.0	3.0802+ 0	1.6023- 1		
A=104	1.880825	1.0	1.8685+ 0	7.5748- 2		
\ ≈105	0.964228	1.4	9.4711- 1	3.8642- 2		
A=106	0.401576	1.0	4.0922- 1	1.7994- 2		
A=107	0.146202	2.8	1.3909- 1	6.3035- 3		
A=108	0.054129	4.	5.7157- 2	2.8578- 3		
A=109	0.031223	6.	2.8444- 2	3.1539- 3		
A=110	0.025445	4.	2.5447- 2	1.9026- 3		
A=111	0.017432	2.8	1.9700- 2	8.0835- 4		
A=112	0.013043	4.	1.1860- 2	6.8785- 4		
A=113	0.014205	4.	1.5999- 2	7.8756- 4		
A=114	0.011833	4.	1.2909- 2	6.3254- 4		
4≈115	0.012584	2.8	1.1389- 2	6.3085- 4		
A=116	0.013249	4.	1.6099- 2	8.0499- 4		
A=117	0.012762	4.	1.2223- 2	1.1609- 3		
A=118	0.011346	8.	1.3249- 2	2.0526- 3		
A=119	0.012874	8.	1.4904- 2	1.4184- 3		
A=120	0.012609	8.	1.4425- 2	1.4517- 3		
A=121	0.013047	6.	1.2590- 2	5.1622- 4		
A=122	0.015485	8.	1.7992- 2			
A=123	0.015658		1.5051- 2			
A=124	0.026788	8.	3.1551- 2	2.6721- 3		
A=125	0.034022		2.6032- 2			
A=126	0.058518		5.9471- 2			
A=127	0.156991		1.2033- 1			
A=128	0.348840		3.3093-1			
	01010010	2.0	J. J	7.9094 £		

FP	US file	error (१)	UK file	error
A=129	0.543386	1.	7.0797- 1	3.1635- 2
A=130	1.810633	2.	1.7900+ 0	1.0182- 1
Xe-131m	0.040470	1.4	3.1249- 2	1.2451- 3
A=131	2.890898	0.5	2.8931+ 0	1.1527- 1
A=132	4.313407	0.35	4.3173+ 0	1.6928- 1
Xe-133m	0.1947	2.	1.9070- 1	7.1606- 3
Xe-133	6.6990	0.5	6.5863+ 0	2.4777- 1
A=133	6.699915	0.35	6.5863+ 0	2.4827- 1
A=134	7.872644	0.5	7.7897+ 0	2.8834- 1
I-135	6.2820	1.4	6.3616+ 0	2.6479- 1
Xe-135m	1.1020	1.4	1.1514+ 0	6.1262- 2
Xe-135	6.5380	0.7	6.5948+ 0	2.5532- 1
A=135	6.539455	0.35	6.5957+ 0	2.5370- 1
A=136	6.318709	0.35	6.3071+ 0	2.3901- 1
A=137	6.188944	0.5	6.2462+ 0	2.7549- 1
A=138	6.768035	0.5	6.7518+ 0	2.6046- 1
A=139	6.413852	0.7	6.4024+ 0	2.4944- 1
A=140	6.220169	0.5	6.3758+ 0	2.4785- 1
A=141	5.847414	1.0	5.8208+ 0	4.3696- 1
A=142	5.849283	0.5	5.8209+ 0	2.6528- 1
A=143	5.956198	0.35	5.9659+ 0	2.2744- 1
A=144	5.499964	0.35	5.4759+ 0	2.0968- 1
A=145	3.933647	0.35	3.9510+ 0	1.5557- 1
A=146	2.997113	0.35	2.9834+ 0	1.1884- 1
A=147	2.246885	0.7	2.2211+ 0	1.9120- 1
A=148	1.673660	0.35	1.6802+ 0	6.7209- 2
A=149	1.081705	1.0	1.0488+ 0	4.2532- 2
A≈150	0.653325	0.5	6.5019- 1	2.6507- 2
A=151	0.418797	1.0	4.1789- 1	1.7048- 2
A=152	0.266932	1.0	2.5240- 1	1.0322- 2
A=153	0.158290	2.8	1.5106- 1	6.1998- 3
A=154	0.074439	1.0	7.2739- 2	2.9817- 3
A=155	0.032138	4.	3.1017- 2	1.2717- 3
A=156	0.014854	2.8	1.3400- 2	5.4945- 4
A=157	0.006151	8.	6.6337- 3	4.3925- 4
A=158	0.003286	11.	1.9710- 3	2.4649- 4
A=159	0.001009	6.	1.0620- 3	7.0118- 5

Table C-1.4: U-238 fast fission

FP	US file	error (%)	UK file	error
н – З			1.0262- 2	3.2419- 3
He- 3			1.0262- 2	3.2419- 3
He- 4			1.4880- 1	4.5467- 2
A= 78	0.011222	23.	7.6701- 3	1.9624- 3
A= 79	0.032673	23.	1.7866- 2	4.2626- 3
A= 80	0.042741	16.	3.9122- 2	9.4491- 3

- 49	-
------	---

FP	US file	error (%)	UK file	error
A= 81	0.086206	23.	8.1197- 2	2.0204- 2
A= 82	0.213784	16.	1.6063- 1	3.9659- 2
A= 83	0.396237	1.4	3.0375- 1	7.2435- 2
A= 84	0.825770	1.4	5.5427- 1	1.2667- 1
Kr- 85	0.1486	2.	193632- 1	4.5351- 2
A= 85	0.743050	1.0	9.0761- 1	1.8276- 1
A= 86	1.296448	1.0	1.1885+ 0	1.1339- 1
A= 87	1.625506	1.0	1.6507+ 0	2.5987- 1
A= 88	2.028030	1.4	2.1889+ 0	3.0018- 1
A= 89	2.761051	1.4	2.9511+ 0	2.9383- 1
A= 90	3.246924	1.4	3.3527+ 0	3.3442- 1
A= 91	4.039440	2.	4.3157+ 0	4.1110- 1
A= 92	4.312441	2.8	4.4009+ 0	6.5592- 1
A= 93	4.913253	2.	5.2053+ 0	6.9016- 1
A= 94	4.610062	2.8	5.1650+ 0	5.2331- 1
Nb- 95m	0.051405	1.0	5.8435- 2	9.4816- 3
A= 95	5.140443	1.0	5.2644+ 0	4.8831- 1
A= 96	6.017329	4.	6.0618+ 0	7.2568- 1
A= 97	5.562461	0.7	5.6850+ 0	8.5074- 1
A= 98	5.944993	1.0	5.7868+ 0	8.9004- 1
A= 99	6.168192	1.4	6.2038+ 0	7.1091- 1
A=100	6.697326	1.0	6.5601+ 0	6.2165- 1
A=101	6.209007	1.4	6.3796+ 0	6.1062- 1
A=102	6.447346	1.0	5.9350+ 0	4.0079-1
A=103	6.275279	1.4	5.9570+ 0	9.5226- 1
A=104	5.035980	1.0	4.6340+ 0	9.9407- 1
A=105	4.051243	1.4	3.7088+ 0	6.0340- 1
A=106	2.489722	1.4	2.4774+ 0	2.4567- 1
A=107	1.445866	8.	1.7371+ 0	2.1617-1
A=108	0.601420	16.	5.7704-1	1.4617- 1
A=109	0.252140	6.	1.2762-1	1.9582- 3
A=110	0.140760	16.		2.3975- 2
A=111	0.071214	2.	6.7991-2	
A=112	0.055901	4.		7.0393- 3
A=113	0.046111	11.	3.0942-2	
A=114	0.039257	16.	3.4042-2	9.0068-3
A=115	0.037548	2.	3.7872-2	4.6437-3
A=116	0.039314	11.	3.1076- 2	
A=117	0.037732	11.	2.7350- 2	
A=118	0.043176	11.		6.6624-3
A=119	0.039720	11.	2.3282 - 2	4.5299- 3 2.8861- 2
A=120 A=121	0.038713	11. 8.	2.1395- 2 2.0230- 2	3.8861- 3 5.0437- 3
A=121 A=122	0.036927	в. 11.	2.0230 - 2 1.9304 - 2	
A=122 A=123		11. 16.	1.9304 - 2 1.9533 - 2	4.8296- 3 4.9769- 3
A=123 A=124	0.044534 0.046461		1.9533 - 2 2.0638 - 2	4.9789- 3 5.2588- 3
		11. 6.	2.0638- 2	
A=125 A=126	0.048524	ь. 6.		8.3809- 3 3.0877- 2
A=126 A=127	0.054089 0.136294	ь. 4.		3.0877- 2 1.4077- 2
A=127 A=128	0.136294	4. 6.	1.4606 - 1 2.9689 - 1	9.5815- 2
A-170	0.200000	υ.	2.3003-1	9.5015- 2

FP	US file	error (%)	UK file	error
A=129	1.011337	6.	6.2464- 1	6.0375- 2
A=130	1.913653	6.	1.6760+ 0	4.2342- 1
Xe-131m	0.046071	1.4	3.7135- 2	3.3995- 3
A=131	3.290794	1.0	3.4381+ 0	3.1473- 1
A=132	5.147494	1.4	4.8484+ 0	4.4053- 1
Xe-133m	0.1908	2.8	1.9713- 1	2.0222- 2
A=133	6.762707	0.5	6.8441+ 0	6.0022- 1
A=134	7.609406	2.8	6.5147+ 0	5.7792- 1
I-135	6.9410	2.	6.6950+ 0	8.1387- 1
Xe-135m	1.0360	2.8	1.0488+ 0	1.2572- 1
A=135	6.967573	0.7	6.7099+ 0	5.9857- 1
A=136	6.979834	2.0	6.7274+ 0	5.6659- 1
A=137	6.052506	0.7	6.2853+ 0	8.5703- 1
A=138	5.762451	1.4	6.1030+ 0	6.0754- 1
A=139	5.670141	1.0	6.0037+ 0	5.4202- 1
A=140	5.81566	0.7	6.0862+ 0	5.4980- 1
A=141	5.336511	2.	5.8580+ 0	5.8322- 2
A=142	4.585776	1.0	4.7945+ 0	7.3957- 1
A=143	4.622060	0.7	4.7807+ 0	5.6021- 1
A=144	4.547939	0.7	4.5543+ 0	4.1453- 1
A=145	3.808983	0.7	3.9097+ 0	3.6825- 1
A=146	3.445628	0.7	3.5216+ 0	3.3323- 1
A=147	2.592719	0.7	2.6361+ 0	113916- 1
A=148	2.112485	0.7	2.2540+ 0	2.5734- 1
A=149	1.625277	1.0	1.6512+ 0	2.9535- 1
A=150	1.273456	1.0	1.2892+ 0	1.2737- 1
A=151	0.799397	1.0	7.9760- 1	8.0774- 2
A=152	0.530227	1.0	5.5069- 1	5.4589- 2
A=153	0.414787	2.	3.5788- 1	4.1342- 2
A=154	0.216281	1.0	2.3728- 1	2.9085- 2
A=155	0.141515	11.	1.2604- 1	3.3532- 2
A=156	0.076033	2.	6.7153- 2	6.9204- 3
A=157	0.041375	16.	3.4374- 2	1.1400- 2
A=158	0.018487	16.	1.7343- 2	4.7529- 3
A=159	0.008619	16.	8.3057- 3	2.9645- 3
A=160	0.003544	23.	3.2833- 3	9.6218- 4

Table C-1.5: Pu-239 thermal fission

FP	US file	error (%)	UK file	error
H - 1			4.0800- 3	7.0527- 4
H – 2			1.3470- 3	2.8929- 4
н – З			1.4420- 2	1.1431- 3
He- 3			1.4420- 2	1.1431- 3
He- 4			2.0800- 1	9.9813- 3
A= 77	0.007235	11.	7.7041- 3	8.7734- 4
A= 78	0.018776	23.	2.9291- 2	2.6873- 3

FP	US file	error (%)	UK file	error
A= 79	0.043651	2.	5.6471- 2	8.3107- 3
A= 80	0.093888	23.	1.0501- 1	1.5309- 2
A= 81	0.183643	16.	1.8859- 1	2.5226- 2
A= 82	0.229687	23.	2.4865- 1	3.4488- 2
A= 83	0.296793	0.5	2.8224- 1	9.5404- 3
A= 84	0.480359	1.0	4.7244- 1	1.9541- 2
Kr-85	0.1227	1.4	1.3612- 1	6.4821- 3
A= 85	0.574068	0.35	5.9322- 1	2.4855- 2
A= 86	0.766201	0.5	7.6965- 1	1.6597- 2
A= 87	1.003923	0.5	9.5813- 1	4.7591- 2
A= 88	1.329789	1.0	1.2967+ 0	3.6448- 2
A= 89	1.722836	2.	1.6974+ 0	3.6418- 2
A= 90	2.104298	2.	1.9931+ 0	4.5830- 2
A= 91	2.486500	1.	2.4523+ 0	1.9244- 1
A= 92	3.009177	0.7	3.0073+ 0	1.3285- 1
A= 93	3.797575	0.7	3.8749+ 0	1.1842- 1
A= 94	4.321833	1.0	4.3690+ 0	1.1624- 1
Nb-95m	0.04831	2.	5.5193- 2	1.4113- 3
A= 95	4.818517	1.0	4.9652+ 0	9.8005- 2
A= 96	4.893751	1.	4.9436+ 0	1.4430- 1
A= 97	5.414114	1.0	5.2279+ 0	2.2972- 1
A= 98	5.830892	1.0	5.9339+ 0	3.8151- 1
A= 99	6.211806	1.4	6.1803+ 0	1.2324- 1
A=100	6.774621	1.4	6.8555+ 0	4.4710- 1
A=101	6.019171	1.4	6.1756+ 0	2.0719- 1
A=102	6.126339	1.4	6.0734+ 0	2.9261- 1
A=103	6.994895	2.	6.9115+ 0	1.7076- 1
A=104	6.094829	1.0	6.0651+ 0	2.0474- 1
A=105	5.643815	2.	5.7592+ 0	1.4688- 1
Ru-106	4.3500	2.	4.1843+ 0	8.5134- 2
A=106	4.350214	2.	4.1870+ 0	8.3230- 2
A=107	3.330057	4.	3.1717+ 0	1.2795- 1
A=108	2.163956	4.	2.0535+ 0	8.7922- 2
A=109	1.477898	4.	1.7180+ 0	1.3427- 1
A=110	0.645132	6.	6.2441- 1	3.1242- 2
A=111	0.295993	2.	3.0742- 1	7.0801- 3
A=112	0.128506	2.	1.2821- 1	7.3268- 3
A=113	0.081664	2.8	8.1038- 2	3.9137- 3
A=114	0.060254	2.8	5.3920- 2	2.6994- 3
A=115	0.042600	6.	3.6415- 2	1.8402- 3
A=116	0.050678	8.	4.5734- 2	2.2895- 3
A=117	0.044459	8.	4.5731- 2	2.2896- 3
A=118	0.032488	8.	4.5662- 2	3.2049- 3
A=119	0.032249	8.	4.8757- 2	3.4320- 3
A=120	0.030585	11.	4.3373- 2	5.3339- 3
A=121	0.037808	8.	5.5220- 2	8.1445- 3
A=122	0.044695	8.	6.9715- 2	
A=123	0.044120	16.	8.9202- 2	
A=124	0.078717	11.	1.2835- 1	6.3339- 3
A=125	0.111659	8.	1.1731- 1	1.3905- 2

FP	US file	error (%)	UK file	error
A=126	0.202324	6.	3.1550- 1	4.5039- 2
A=127	0.506296	6.	4.6206- 1	2.3722- 2
A=128	0.734121	11.	8.3462- 1	4.9365- 2
A=129	1.371454	4.	1.4105+ 0	6.7241- 2
A=130	2.361688	8.	2.8949+ 0	2.6076- 1
(e-131m	0.054019	2.	4.0313- 2	7.9511- 4
A=131	3.856439	0.5	3.7294+ 0	5.3547- 2
Fe-132	5.1390	2.	5.1113+ 0	1.1772- 1
A=132	5.406858	0.5	5.2915+ 0	1.0341- 1
Xe-133m	0.2346	16.	2.1087- 1	6.9941- 3
A=133	7.016466	0.5	6.7685+ 0	1.3091- 1
A=134	7.676881	0.5	6.9055+ 0	2.2748- 1
I=135	6.5420	2.8	6.3506+ 0	3.6663- 1
Xe-135m	1.7140	32.	1.7219+ 0	1.8711- 1
Ke-135	7.66080	1.0	7.3928+ 0	1.7430- 1
A=135	7.621001	0.7	7.4073+ 0	1.7495- 1
A=136	7.143924	1.0	6.8649+ 0	1.8881- 1
Cs-137	6.6070	0.5	6.7235+ 0	5.3918- 1
A=137	6.613842	0.5	6.7290+ 0	1.4120- 1
A=138	6.124533	1.0	6.1310+ 0	1.4121- 1
A=139	5.637200	2.8	5.9952+ 0	1.1654- 1
Ba-140	5.3550	1.4	5.3187+ 0	1.0380- 1
A=140	5.364788	1.0	5.3300+ 0	1.0388- 1
A=141	5.246968	2.	5.2068+ 0	1.7430- 1
=142	4.928967	0.5	4.9652+ 0	1.0080- 1
A=143	4.413261	0.5	4.4787+ 0	8.7227- 2
A=144	3.739785	0.35	3.7486+ 0	7.3472- 2
A=145	2.986310	0.35	3.0322+ 0	5.9799- 2
A=146	2.458146	0.35	2.4907+ 0	4.9296- 2
A=147	2.002981	1.0	2.0408+ 0	4.1702- 2
A=148	1.642120	0.5	1.6789+ 0	3.3347- 2
A=149	1.216561	0.7	1.2630+ 0	2.7674- 2
A=150	0.967459	0.5	9.7568- 1	1.9447- 2
A=151	0.738426	0.7	7.7758- 1	1.7848- 2
A=152	0.576317	1.0	6.0786- 1	1.6369- 2
A=153	0.361259	6.	3.9953- 1	5.7096- 2
A=154	0.259788	1.4	2.7987- 1	1.1462- 2
A=155	0.165724	11.	1.5937- 1	2.3370- 2
A=156	0.124018	4.	1.1457- 1	4.4704- 3
A=157	0.074152	6.	7.5581- 2	7.5919- 3
A=158	0.041439	16.	4.0766- 2	6.1504- 3
	0.020653	6.	2.1369- 2	
A=159	0.020055	0.	2.1305 2	112000 0

Table C-1.6: Pu-241 thermal fission

FP	P US file error UK file error			
		(%)		
Н – З			1.4100- 2	2.4373- 3
He- 3			1.4100- 2	2.4373- 3
He- 4			2.0150- 1	2.8773- 2
A= 77	0.001896	23.	4.9654- 4	1.1775- 4
A= 78	0.011521	16.	3.2269- 3	1.6954- 3
A= 79	0.014959	16.	9.9117- 3	5.0874- 3
A= 80	0.029235	16.	2.4543- 2	1.2584- 2
A= 81	0.062121	16.	5.4388- 2	2.7624- 2
A= 82	0.136745	8.	1.1250- 1	5.5327- 2
A= 83	0.201544	1.4	1.9983- 1	2.7036- 2
A= 84	0.351325	2.	3.5783- 1	4.7347- 2
Kr- 85	0.083114	2.8	8.5409- 2	1.2529- 2
A= 85	0.406488	1.4	3.9504- 1	5.5741- 2
A= 86	0.594552	2.	6.1450- 1	7.9957- 2
A= 87	0.752828	2.	7.4639- 1	1.1430- 1
A= 88	0.990303	1.4	1.0043+ 0	1.2671- 1
A= 89	1.233109	2.8	1.2301+ 0	1.5814- 1
A= 90	1.535820	1.4	1.5679+ 0	2.0188- 1
A= 91	1.864133	1.4	1.7770+ 0	3.1347- 1
A= 92	2.308494	1.4	2.3477+ 0	3.6721- 1
A= 93	2.978050	1.4	3.0409+ 0	3.6667- 1
A= 94	3.391152	1.4	3.3712+ 0	4.3095- 1
Nb-95m	0.039258	2.8	4.4301- 2	5.8733- 2
A= 95	3.925621	1.4	3.9908+ 0	5.1574- 1
A= 96	4.401147	1.4	4.3143+ 0	5.5549- 1
A= 97	4.801799	1.4	4.6503+ 0	7.2208- 1
A= 98	5.035685	2.	5.1121+ 0	6.7883- 1
A= 99	5.961885	2.	5.6475+ 0	7.4853- 1
A=100	6.254494	2.	6.8781+ 0	9.0679- 1
A=101	6.231942	2.	5.7867+ 0	7.7836- 1
A=102	6.655272	2.	6.2799+ 0	8.3652- 1
A=103	6.776879	2.8	6.8912+ 0	9.1332- 1
A=104	7.179518	2.	6.8932+ 0	8.7550- 1
A=105	6.074350	2.8	5.9518+ 0	7.7390- 1
A=106	6.103987	2.	6.1356+ 0	7.8339- 1
A=107	4.886332	8.	4.9371+ 0	6.8310- 1
A=108	3.769599	8.	3.9155+ 0	5.2877- 1
A=109	2.587597	4.	2.7362+ 0	3.6673- 1
A=110	1.325114	8.	1.3638+ 0	6.2801- 1
A=111	0.585511	2.8	5.8703- 1	2.6784- 1
A=112	0.218486	2.8	1.9329- 1	4.0689- 2
A=113	0.151924	4.	1.8491- 1	5.3551- 2
A=114	0.071086	23.	1.9556- 1	1.0210- 1
A=115	0.038087	11.	1.6397- 1	8.2339- 2
A=116	0.027787	32.	1.2504- 1	6.5970- 2
n-117	0.023626	11.	8.9845- 2	4.7501- 2
A=117				

FP	US file	error (%)	UK file	error
A=119	0.023156	32.	5.1725- 2	2.2521- 2
A=120	0.025623	23.	5.8283- 2	2.4206- 2
A=121	0.025882	32.	9.2000- 2	3.2331- 2
A=122	0.025882	32.	1.0580- 1	3.7177- 2
A=123	0.026704	32.	1.3751- 1	4.8466- 2
A=124	0.032352	32.	1.8475- 1	6.5208- 2
A=125	0.046901	8.	2.5873- 1	9.1843- 2
A=126	0.082238	23.	3.7349- 1	1.3356- 1
A=127	0.232387	4.	5.6292- 1	2.0274- 1
A=128	0.379232	23.	8.2962- 1	2.9552- 1
A=129	0.819252	23.	1.3333+ 0	4.6024- 1
A=130	1.818826	11.	2.0717+ 0	6.8752- 1
Xe-131m	0.043412	4.	3.2775- 2	4.4614- 3
A=131	3.100837	1.4	3.0344+ 0	4.1305- 1
Te-132	4.5030	2.8	4.4216+ 0	5.9627- 1
A=132	4.564343	1.4	4.4383+ 0	5.9953- 1
Xe-133m	0.1944	4.	1.8581- 1	2.3936- 2
A=133	6.729190	0.7	6.4310+ 0	8.4628- 1
A=134	7.917365	1.4	7.4213+ 0	9.5689- 1
I -135	6.9430	2.8	6.8359+ 0	8.8839- 1
Xe-135m	1.182	16.	1.1840+ 0	1.6244- 1
Xe-135	7.1701	2.	7.0113+ 0	8.9915- 1
A=135	7.170771	1.0	7.0122+ 0	9.1416- 1
A=136	7.105131	1.4	6.7786+ 0	9.6451- 1
A=137	6.650911	0.7	6.4249+ 0	8.2675- 1
A=138	6.605149	1.0	6.5165+ 0	8.3863- 1
A=139	6.217390	2.	6.3815+ 0	1.6076+ 0
A=140	5.766685	1.4	5.8320+ 0	7.6529- 1
A=141	4.905772	1.4	4.8883+ 0	7.7716- 1
A=142	4.746982	1.0	4.6788+ 0	6.1964- 1
A=143	4.577993	0.7	4.3022+ 0	5.7116- 1
A=144	4.227384	0.7	3.9623+ 0	5.3861- 1
A=145	3.262911	1.0	2.9817+ 0	4.1958- 1
A=146	2.766456	0.7	2.4878+ 0	3.5415- 1
A=147	2.284949	1.4	2.1204+ 0	3.7956- 1
A=148	1.932103	0.7	1.7574+ 0	2.4818- 1
A=149	1.474076	1.4	1.3964+ 0	1.9839- 1
A=150	1.209434	1.0	1.1019+ 0	1.5604- 1
A=151	0.913021	1.4	8.4426- 1	1.1899- 1
A=152	0.717632	1.4	7.1598- 1	1.0067- 1
A=153	0.540584	4.	5.0477- 1	1.3611- 1
A=154	0.379114	2.	4.0419- 1	6.9870- 2
A=155	0.241414	8.	3.9721- 1	1.5862- 1
A=156	0.172125	2.8	3.1887- 1	1.2409- 1
A≓157	0.135369	4.	2.5137- 1	9.6873- 2
A≈158	0.092244	23.	1.9214- 1	7.2121- 2
A=159	0.048030	4.	1.3487- 1	5.0895- 2
A=160	0.020499	23.	1.0408- 1	3.7957- 2
A=161	0.008468	4.	7.3399- 2	
A=162			5.0974- 2	1.8554- 2

C-2: Selected independent fission product yields

The table below summarises the yield values (and types) which are significant and included in Tables C-2.1 to C-2.6.

FP	Th-232	U-233	U-235	U238	Pu-239	Pu-241
Kr-82	С	С	с		с	с
Kr-85	i	i	i	i	i	i
Nb-95m					Ĺ	
Nb-95					i	
Mo-96	с	С	с		с	с
Xe-130		с	с		с	
Xe-133m		i	i	i	i	i
Xe-133		í	í	í	i	í
Cs-134		i			i	
Xe-135m	i	i	i	i	i	i
Xe-135	i	i	i	i	i	Ĺ
Nd-144		с			с	
Sm-150		с	с		с	
Eu-154		i			i	

Description of table entries:

Type: i independent yield of fission product is listed

c cumulative yield of fission product is listed when shielded from beta decay by a stable or long lived precursor; the yield value given is the sum of the independent yields of the nuclide listed and it's short lived precursors which are also shielded (eg.: the cumulative field of Kr-82 is the sum of independent yields of Br-82m, Br-82 and Kr-82, all shielded by stable Se-82).

Only those yield values are listed that exceed 0.01% of the corresponding chain yields in one of the files. According to this criterion, the independent yields of the following fission products, although requested by safeguards experts, are insignificant and not included in any of the tables: Mo-92,94, Xe-128,129, Nd-142, Pm-148m,148, Sm-148, Eu-151, Eu-152.

Source of data:

US file: ENDF/B-6 Fission Yield File.

UK file: R.W. Mills,: "UKFY3", the the latest update of UK library of independent and cumulative fission product yields, in ENDF-6 format (1996).

The file UKFY3 contains also several other tables of fission yield data and discrepances which are available from the author or the Data Centers.Both the US file and the UK file are available on magnetic tape from the Data Centers.

FP	Туре	US file %/fission	error abs	UK file %/fission	error abs
Kr- 82	с	9.8798- 5	6.3231-5	8.4515- 5	6.3502- 5
Kr- 85	i	9.9498- 4	6.3679-4	1.5502- 3	1.0902- 3
Mo- 96	с	1.7800- 4	8.0100-5	5.8294- 6	5.2087- 6
Ke-135m	i	7.5508- 3	4.8325-3	1.1571- 2	8.9833- 3
Ke-135	i	2.6529- 3	1.6979-3	4.1357- 3	3.2107- 3

Table C-2.1: Th-232 fast fission

Table C-2.2: U-233 thermal fission

FP	Туре	US file %/fission	error abs	UK file %/fission	error abs
Kr- 82	с	8.2998- 4	1.3280-4	7.0101- 3	2.6386- 3
Kr- 85	i	9.5576- 2	2.1982-2	7.4844- 2	2.8763- 2
Mo- 96	с	5.5859- 3	3.5750-3	8.1389- 3	3.2030- 3
Xe-130	с	2.5969- 3	7.2714-5	3.0718- 3	1.2114- 3
Xe-133m	i	4.1321- 2	2.6445-2	2.7917- 2	1.1059- 2
Xe-133	í	1.4667- 2	5.8667-4	1.1564- 2	4.5810- 3
Cs-134	i	1.3400- 4	8.5758-5	9.8285- 4	3.7408- 4
Xe-135m	i	0.8063+ 0	0.5160+0	8.2264-1	2.5306- 1
Xe-135	i	0.4206+ 0	4.6271-2	3.4076- 1	1.0483- 1
Nd-144	*	2.7558- 4	1.5969-4	1.0683- 3	3.7902- 4
Sm-150	с	4.3699- 4	2.7967-4	1.1306- 3	4.7102- 4
Eu-154	i	1.0400- 6	6.6558-7	3.8653- 6	1.7776- 6

*) Sum of Pr-144 + Nd-144 independent yields.

Table	C-2.	3:	U-235	thermal	fission

FP	Туре	US file %/fission	error abs	UK file %/fission	error abs
Kr- 82	с	5.4696- 5	6.0166-6	2.8024- 4	9.9192- 5
Kr- 85	i	2.5533- 2	4.0853-3	5.1951- 3	1.9226- 3
Mo- 96	с	5.4396- 4	3.4813-4	4.1961- 4	1.5231- 4
Xe-130	с	2.2198- 4	3.5517-5	3.5329- 5	1.3015- 5
Xe-133m	l i	1.8859- 3	1.2070-3	1.0563- 3	3.8000- 4
Xe-133	l i	6.6595- 4	3.9957-5	4.3753- 4	1.5743- 4
Xe-135m	li	0.1781+ 0	1.0687-2	1.6532- 1	5.7784- 2
Xe-135	i	7.8513- 2	4.7108-3	6.8480- 2	2.3936- 2
Sm-150	с	2.9998- 5	1.9199-5	6.1426- 5	2.2478- 5

FP	Түре	US file %/fission	error abs	UK file %/fission	error abs
<r- 85<="" td=""><td>i</td><td>1.9900- 4</td><td>1.2736-4</td><td>4.8698- 5</td><td>2.8886- 5</td></r->	i	1.9900- 4	1.2736-4	4.8698- 5	2.8886- 5
Ke-133m	i	1.2210- 3	7.8145-4	1.9489- 5	1.1543- 5
Ke-133	i	4.1800- 4	2.6752-4	6.9656- 6	4.1257- 6
Ke-135m	l i	1.5710- 2	1.0055-2	1.1101- 2	6.8002- 2
Xe-135	i	1.1154-2	7.1386-3	3.9677- 3	2.4304- 3

Table C-2.4: U-238 fast fission

Table C-2.5: Pu-239 thermal fission

FP	Түре	US file %/fission	error abs	UK file %/fission	error abs
Kr- 82	с	1.2890- 3	2.5780-5	1.8558- 3	6.8191- 4
Kr- 85	i	1.0026- 2	6.4166-3	1.2328- 2	4.3574- 3
Nb- 95m	i	1.3200- 4	8.4479-4	8.4180- 5	3.0673- 5
Nb- 95	i	5.6499- 4	3.6160-4	3.6406- 4	1.3266- 4
Mo- 96	с	3.6090- 3	2.3097-3	5.0806- 3	1.8108- 3
Xe-130	с	4.6939- 3	6.5715-5	1.7210- 3	5.1997- 4
Xe-133m	i	3.3799- 2	2.1631-2	1.6608- 2	6.0289- 3
Xe-133	i	9.4479- 3	1.0393-3	6.8793- 3	2.4973- 3
Cs-134	i	3.3500- 4	2.1440-4	5.7351- 4	2.0511- 4
Xe-135m	i	0.7523+ 0	0.4815+0	7.3758- 1	2.3517- 1
Xe-135	i	0.3141+ 0	1.2565-2	3.0552- 1	9.7416- 2
Nd-144	*	3.6574- 4	2.1186-4	1.2372- 3	7.3020- 4
Sm-150	с	1.1520- 3	7.3727-4	2.2585- 3	7.8736- 4
Eu-154	i	1.4000- 5	8.9599-6	2.5155- 5	9.1668- 6

*) Sum of Pr-144 + Nd-144 independent yields.

Table C-2.6: Pu-241 fast fission

FP	Туре	US file %/fission	error abs	UK file %/fission	error abs
Kr- 82	с	3.2300- 4	2.0672-4	1.1859- 4	9.0654- 5
Kr- 85	i	2.3780- 3	1.5219-3	1.5451- 3	1.0057- 3
Mo- 96	с	1.2326- 2	5.5467-3	3.3488- 4	2.2303- 4
Xe-133m	i	6.1400- 4	3.9296-4	6.1715- 4	4.0381- 4
Xe-133	i	2.5100- 4	1.6064-4	2.5564- 4	1.6727- 4
Xe-135m	i	0.1614+ 0	0.1033+0	1.2442- 1	8.2420- 2
Xe-135	i	6.5501- 2	5.2401-3	5.1539- 2	3.4140- 2

e-mail: services@iaeand.iaea.or.at		
fax: (43-1)20607		
cable: INATOM VIENNA a		
telex: 1-12645 atom a		
telephone: (43-1)2060-21710		
System		
-		
NDL2 for FENDL-2 files		

.

.