

AC55 Motor with DMOC445 Controller

Overview

The Azure Dynamics AC55 with DMOC445 Drive System features the Azure AC55 motor mounted in an axial design. This single motor directly drives the differential, typically via a short driveshaft. Because of the direct drive layout, the drive unit fits into the area formerly occupied by the traditional drive shaft of delivery vans, trucks, etc., making vehicle conversions fast and easy.

Applications & Features

In battery-EV applications, the AC55 and DMOC445 drives are designed for use in vans, trucks and buses weighing from 5,000 to 11,000 lbs. The motor is of a low-speed design for a typical 3-5:1 overall vehicle drive ratio.

- AC induction motor
- · Air-cooled
- High-efficiency brushless design
- Compact, lightweight construction
- · Low rotating losses
- Low electrical resistance
- · Cost effectiveness and high reliability
- Because it is used in conjunction with an Azure DMOC motor controller, the AC55 can function as an "electronic transmission," eliminating the need for a multi-speed gearbox in some applications, directly driving the vehicle's wheels with a fixed ratio.

DMOC445 Digital Motor Controller

Azure's DMOC445 is a DSP-controlled, rugged, waterproof (except for cooling fans) inverter for controlling 3-phase AC motors and generators. Liquid-cooling is available.

- DSP-based control
- Regenerative braking
- Space Vector PWM and Field Oriented Control
- Internal contactor with pre charge circuitry
- Lightweight aluminum chassis
- Waterproof, rugged construction
- Trenchgate IGBTs for maximum efficiency
- Over voltage and under voltage protection
- Three-level over current protection:
- > 10kHz DSP-based current control
- > Analog over current watchdog> "Desat" protection at gate level
- Inverter over temperature protection
- Inverter over temperature protection
 Motor over temperature protection
- Over speed torque limit
- Diagnostics and data visualization via Controller Area Network (CAN) or RS232
- CAN control with upper/lower torque limits and speed setpoint commands, plus DMOC status messages over CAN. (Note, customers must provide their own CAN interface for both.)

Specifications

Peak Torque	Nm	280
Continuous Torque* at Nominal Speed	Nm	140
Nominal Speed	Rpm	2000
Maximum Mechanical Speed	Rpm	8000
Maximum Current	A rms	250
Continuous Shaft Power* at 1500-2500 rpm	kW	25
At a voltage of	VDC	312
Peak Efficiency	%	87
Peak Shaft Power	kW	59
At a voltage of	VDC	312
Weight AC55	kg	106
Weight DMOC445	kg	14.7
Diameter AC55	mm	343
Length AC55	mm	447
Length DMOC445	mm	450
Width DMOC445	mm	228
Height DMOC445 (with fan)	mm	238
Minimum Recommended Nominal Battery Voltage	VDC	312
Maximum Nominal Battery Voltage	VDC	336
Minimum Operational Voltage	VDC	100
Maximum Operational Voltage	VDC	400
Maximum Voltage "On Charge"	VDC	450
Minimum/Maximum Operating Temperatures	°C	-40 to 60
*** 25°6		

*At 25°C

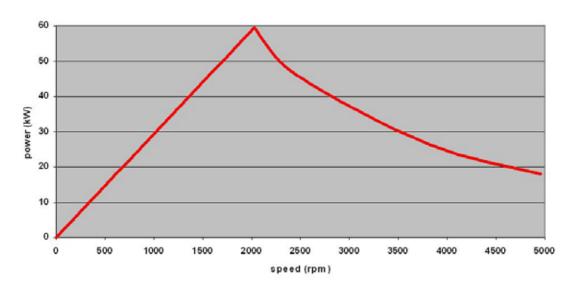
System design and application affect performance. These specifications are guidelines to help facilitate system design and application and are not guaranteed in any particular application. All specifications are subject to change without notice.

Driving a WOrld of difference

For further information on AZD's Force Drive Systems contact Beth Silverman, Sales Manager 781.932.9009 Ext. 6224 sales@azuredynamics.com or call toll free 877.932.9009

Page 1 of 5 Last modified 08/10/10

AC55 Motor with DMOC445 Controller

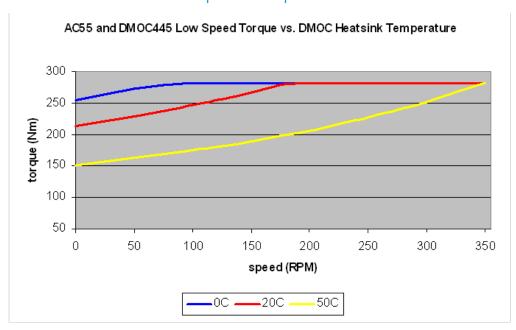

Torque-Speed Envelope

AC55 Torque vs. Speed 400A peak, 312VDC

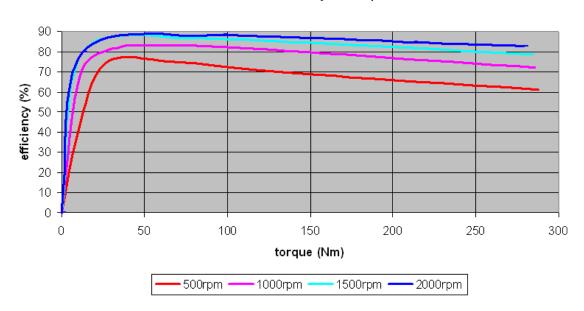
Power-Speed Envelope

AC55 Power vs. Speed 400A peak, 312VDC

Driving a WOrld of difference


For further information on AZD's Force Drive Systems contact Beth Silverman, Sales Manager 781.932.9009 Ext. 6224 sales@azuredynamics.com or call toll free 877.932.9009

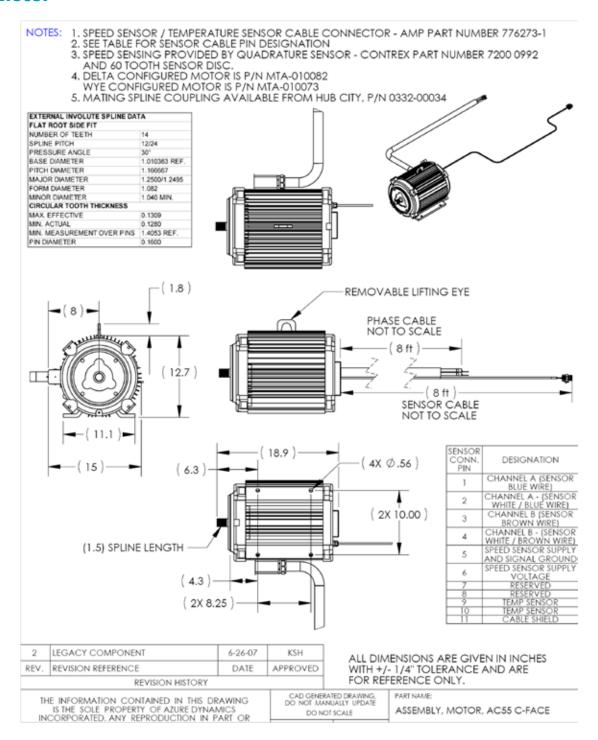
Page 2 of 5 Last modified 08/10/10


AC55 Motor with DMOC445 Controller

Low Speed Torque vs. RPM

Efficiency vs. Torque

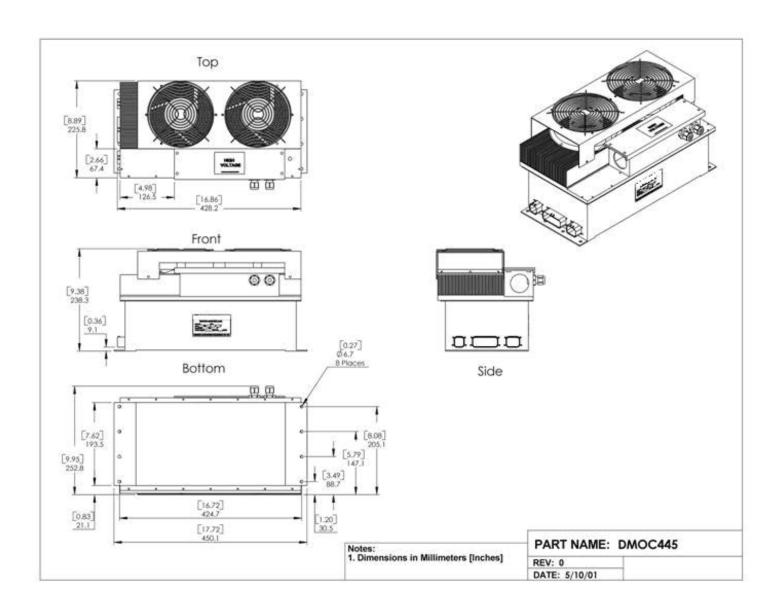
AC55 and DMOC445 efficiency vs. torque at 312V


Driving a WOrld of difference

For further information on AZD's Force Drive Systems contact Beth Silverman, Sales Manager 781.932.9009 Ext. 6224 sales@azuredynamics.com or call toll free 877.932.9009

Page 3 of 5 Last modified 08/10/10

AC55 Motor


Driving a WOrld of difference

For further information on AZD's Force Drive Systems contact Beth Silverman, Sales Manager 781.932.9009 Ext. 6224 sales@azuredynamics.com or call toll free 877.932.9009

Page 4 of 5 Last modified 08/10/10

DMOC445 Motor Controller

Driving a WOrld of difference

For further information on AZD's Force Drive Systems contact Beth Silverman, Sales Manager 781.932.9009 Ext. 6224 sales@azuredynamics.com or call toll free 877.932.9009

Page 5 of 5 Last modified 08/10/10